海王星

海王星太阳系八大行星中距离太阳最远的,体积第四大的,但质量是第三大的行星。海王星的质量约为地球的17.147倍。海王星以罗马神话中的尼普顿(Neptunus)命名,因为尼普顿是海神王,所以中文译为海王星。天文学的符号Astronomical symbol for Neptune.(♆,Unicode编码U+2646),是希腊神话的海神波塞顿使用的三叉戟

海王星 ♆
航海家2号于1989年拍摄的海王星(颜色校准)
发现
发现者于尔班·勒威耶
约翰·戈特弗里德·加勒
发现日期1846年9月23日[1]
编号
形容词Neptunian
轨道参数[2][注 1]`
历元 J2000
远日点4,553,946,490 km
30.44125206 AU
近日点4,452,940,833 km
29.76607095 AU
半长轴4,503,443,661 km
30.10366151 AU
离心率0.011214269
轨道周期60,327.624 
165.17156 
会合周期367.49 day[3]
平均轨道速度5.43 km/s[3]
平近点角267.767281°
轨道倾角1.767975°
6.43° to Sun's equator
升交点黄经131.794310°
近日点参数265.646853°
已知卫星16
物理特征
赤道半径24,764±15 km[4][5]
地球的3.883倍
半径24,341±30 km[4][5]
地球的3.829倍
表面积7.6408×109 km²[5][6]
地球的14.94倍
体积6.254×1013 km³[3][5]
地球的57.74倍
质量1.0243×1026 kg[3]
地球的17.147倍
平均密度1.638 g/cm³[3][5]
表面重力11.15 m/s²[3][5]
1.14 g)
23.5 km/s[3][5]
恒星周期0.6 day[3]
15 h 57 min 59 s
赤道自转速度2.68 km/s
9,660 km/h
转轴倾角28.32°[3]
北极赤经17 h 19 min 59 s
299.333°[4]
北极赤纬42.950°[4]
反照率0.290 (bond)
0.41 (geom.)[3]
表面温度 最低 平均 最高
1 bar level 72 K[3](−201 ℃)
0.1 bar 55 K[3]
视星等8.0 to 7.78 [3]
角直径2.2" — 2.4" [3]
大气特征[3]
大气标高19.7±0.6 km
成分
80±3.2% 氢分子(H2
9±3.2%
1.5±0.5% 甲烷
~0.019% 重氢(HD)
~0.00015% 乙烷

    作为一个冰巨行星,海王星的大气层为主,还有微量的甲烷。大气层中的甲烷是行星呈现淡蓝色的一部分原因[7][8],因为天王星大气中存在浓雾,所以海王星的蓝色比有同样甲烷份量的天王星更为鲜艳。海王星有太阳系最强烈的,测量到的风速高达每小时2,100公里[9]1989年航海家2号飞掠过海王星,对其南半球的大暗斑和木星的大红斑做了比较。海王星距离太阳比较远,是太阳系中最冷的地区之一,海王星云顶的温度是-218℃(55K),[10][10][11],内核的温度约为7,000℃,与太阳表面温度相当,这也和大多数已知的行星相似。

    海王星于1846年9月23日被发现[1],是唯一通过数学预测而非有计划的观测发现的行星。天文学家利用天王星轨道的摄动推测出海王星的存在与可能的位置。迄今仅有航海家2号曾在1989年8月25日拜访过海王星[12][13]。2003年,美国国家航空暨太空总署提出有如卡西尼-惠更斯号科学水准的海王星轨道探测计划,但不使用热滋生反应提供电力的推进设备;这项计划由喷射推进实验室加州理工学院一起完成。[14]

    2022年7月12日,詹姆斯·韦伯望远镜再次对海王星进行了拍摄,30多年来首次清晰地拍摄到海王星的行星环[15]

    历史

    发现

    伽利略在1612年12月28日首次观测并描绘出海王星,并在1613年1月27日再度观测,但因为观测的位置在夜空中靠近木星(在的位置),令这伽利略把两次观测都误认海王星是一颗恒星[16],在伽利略第一次观测的时候,海王星在转向逆行的位置,刚开始逆行时的运动过于微小,以至于伽利略的小望远镜查觉不出位置的改变[17]。但在2009年7月,墨尔本大学的物理学家大卫·杰美生宣称,有新的证据表明伽利略至少知道他看见的星星相对于背景的恒星有微量的相对运动[18]

    于尔班·勒威耶,以自己的计算发现海王星的人。

    1821年,亚历斯·布瓦出版天王星轨道表,[19]随后的观测显示出天王星的轨道与表中的位置偏差越来越大,布瓦因此假设有摄动体存在[20]。1843年,英国数学家约翰·柯西·亚当斯计算出会影响天王星运动的第八颗行星轨道,并将计算结果送交皇家天文学家乔治·比德尔·艾里,他询问了亚当斯一些在计算上的问题,亚当斯虽然草拟答案但未曾回复。

    1846年,法国工艺学院的天文学教师于尔班·勒威耶,在没有同伴的支持下,独立完成了海王星位置的推算。同年,英国的约翰·赫歇耳也开始拥护以数学的方法去搜索行星,并说服詹姆斯·查理士着手进行[20][21]

    在多次躭搁之后,查理士在1846年7月勉强开始搜索的工作;而在同时,勒威耶也说服柏林天文台约翰·戈特弗里德·加勒搜索行星。当时仍是柏林天文台的学生达赫斯特表示他正好完成勒威耶预测天区的最新星图,可以做为寻找新行星时与恒星比对的参考图。1846年9月23日晚间海王星被发现,与勒威耶预测的位置相距不到1°[22][23],但与亚当斯预测的位置相差12°。事后,查理士发现他在8月时已经两度观测到海王星,但因为对这件工作漫不经心而未曾进一步的核对。[20][24][25]

    由于民族优越感民族主义,这项发现在英法两国引起争议,国际间的舆论最终迫使勒威耶接受亚当斯也是共同的发现者。然而,在1998年,史学家才得以重新查看天文学家艾根遗产中的海王星文档(来自格林威治天文台的历史文档,明显是被艾根窃取近卅年,在他逝世之后才得重见天日。)[26]。在查看过这些文档之后,有些史学家认为亚当斯不应该得到如同勒威耶的殊荣。[27]

    命名

    发现之后不久,海王星不是被称为“天王星外的行星”就是“勒维耶的行星”。约翰·戈特弗里德·加勒是第一位建议取名的人,他建议这颗行星称为“雅努斯”(罗马神话中看守门户的双面神)。在英国,查理士提议将之命名为“欧开诺斯[28];在法国,阿拉戈建议称为“勒维耶”,但在法国之外有对这提议强烈的抗议声浪[29]法国天文年历当时以“赫歇耳”称呼天王星,并以“勒维耶”称呼这颗新发现的行星[30]。同时,在分开和独立的场合,亚当斯建议修改天王星的名称为“乔治”,而勒维耶经由经度委员会建议以“Neptune”作为新行星的名字。瓦西里·雅可夫列维奇·斯特鲁维 在1846年12月29日于圣彼得堡科学院挺身而出支持勒维耶建议的名称。[31]很快,海王星成为国际上公认的新名称。在罗马神话中的“Neptune”等同于希腊神话的“Poseidon”,都是海神,因此中文翻译为海王星。新发现的行星遵循了行星以罗马神话中的众神为名的原则[32],而除了天王星之外,都在远古时代就被命名[33]

    中文韩文日文越南文中,该行星名称的汉字写法都是“海王星”[34][35]。在印度,这颗行星的名称是Varuna(即伐楼拿),是印度神话中的海神,与希腊-罗马神话中的Poseidon/Neptune意义是相同的。

    物理性质

    质量和结构

    海王星和地球大小比较。
    海王星内部结构

    海王星的质量是1.0243×1026公斤[3],是介于地球类木行星(指木星土星)之间的中等行星,它的质量既是地球的17倍,也是木星的1/18.6倍。由于它的质量小于典型的类木行星,而且密度、组成成份、内部结构也和类木行星有显着差别,因此海王星和天王星经常被归为类木行星的子类:冰巨行星,在寻找太阳系外行星的领域,海王星被用作一个通用的代号,指所发现的类似海王星质量的系外行星[36],就如同系外“木星”的用法。

    海王星内部结构和天王星相似,行星内核是一个由大概1.2倍地球质量的硅酸盐构成的混合体,中心压力7百万(7千亿),大概为地球中心的两倍。海王星地幔的质量相当于10到15个地球质量,富含、甲烷和其它成份[1],是在极端高气压和极端高热的环境下形成的超临界流体,这种高导电性的流体通常也被叫作水-氨海洋[37]

    海王星内核的压力是地球表面气压的数百万倍,通过比较转速和扁率可知海王星的质量分布不如天王星集中。

    大气层

    大气层质量占全海王星大约5-10%,并向中心延伸10%到20%,甲烷、氨和水的含量随深度增加而上升[10],而其温度、密度和气压也随之而不断上升,进而逐渐过渡成为极炽热和极稠密的地幔海洋。

    在高海拔处,海王星的大气层由80%的和19%的组成[10],也存在着微量甲烷。主要的吸收带出现在600纳米以上波长的红色至红外线的光谱位置。与天王星一样,大气层的甲烷部分吸收了红光,使海王星呈现淡蓝色的色调[38],因为天王星大气含有更多的浓雾,所以海王星的淡蓝色比天王星柔和的青色较蓝[39]

    詹姆斯韦伯望远镜下的海王星

    海王星的大气层可以细分为两个主要的区域:低层的对流层,该处的温度随高度降低;平流层,该处的温度随着高度增加,两层边界的对流层顶气压为0.1(10千帕)[40]。平流层在气压低于10−5至10−4(1-10)处成为增温层[40],并逐渐过渡为散逸层。 模型表明海王星对流层的云带成分取决于不同海拔高度的气压[41]。高海拔的云出现在气压低于1巴之处,该处的温度使甲烷可以凝结形成甲烷云。当压力在1巴至5巴(100至500千帕)时,人们认为会形成硫化氢的云。压力在5巴以上时,云可能会由硫化铵硫化氢组成。更深处的水冰云可以在压力大约为50巴(5百万帕)处被发现,该处的温度达到0℃。在海拔更低处,可能会发现氨和硫化氢的云[42]

    结合颜色和近红外线的海王星影像,显示在它的大气层中的甲烷带,和他的4颗卫星普罗狄斯拉瑞莎加勒蒂亚迪斯比纳
    海王星高层的云带在较低层云顶形成阴影。

    海王星高层的云被观察到在不透明的低层云的顶部形成阴影,高层的云也会沿着相同的纬度环绕行星。这些云环带的宽度大约在50公里至150公里[43],并且在低层云顶之上50公里至110公里。这些云只在对流层出现,因为平流层和增温层没有天气活动。2023年8月,海王星的云层可能因太阳耀斑而消失[41]哈勃太空望远镜和地面望远镜通过三十年的观测表明,海王星的云活动与太阳周期有关,而非行星自己的季节性变化。[44][45]

    海王星的可见光光谱表明,由于甲烷被紫外线光解后的产物(乙烷乙炔)凝结[10][40],使得平流层低层出现雾气。平流层也含有微量的一氧化硫氰化氢[40][46]。海王星的平流层因为碳氢化合物()的浓度较高,因此会比天王星的平流层温暖[40]

    天王星的热成层有着大约750K的异常高温,其原因至今还不清楚[47][48]。因为这颗行星与太阳的距离太遥远,不可能是从太阳来的紫外线辐射产生的高温。一个可能的假设是行星的磁场离子产生交互作用;另一个假设是来自行星内部的重力波在大气层中消耗而产生热量。热成层包含微量二氧化碳和水,其来源可能来自外部,例如陨石宇宙尘埃[42][46]

    磁层

    海王星有着与天王星类似的磁层,它的磁场相对自转轴有着达47°的倾斜,并且磁场中心偏离行星中心至少0.55半径(偏离质心13,500 公里)。在航海家2号抵达海王星之前,天王星的磁层倾斜被假设是因为它侧向自转的结果,但通过比较这两颗行星的磁场,科学家现在认为这种极端的指向可能是行星内部流体的特征。这个现象可能是海王星地函中的导电流体(可能是氨、甲烷和水的混合体)[42]分层出稳定壳层及不稳定的热对流壳层,较薄的对流壳层之发电机效应产生的磁层特征与地球磁场不同,才造成磁极偏移的结果。[49],由于内部巨大的压力,这些导电体有可能是金属氢[50][51],甚至可能有金属铵[52][53][54]简并态物质

    海王星于磁赤道表面的磁场强度大约是14 微特斯拉(0.14 G[55]。海王星的磁偶极矩大约是2.2 × 1017 T·m3(14 μT·RN3,此处RN是海王星的半径)。海王星的磁场具有复杂的几何结构,比如磁场强度可能超过磁偶极矩的强大四极矩。相较之下,地球、木星和土星的磁场四极矩相对磁偶极矩都非常小(0.14、0.24和0.076倍),并且相对于自转轴的倾角也都不大。海王星巨大的四极矩可能是磁场中心偏离行星中心和发电机效应受磁场偏移的几何学限制的结果[56][57]

    航海家2号在极紫外线和无线电频率下的测量表明,海王星拥有微弱,复杂和独特的极光,但因观测时间所限,并未以红外线探测。天文学家随后使用哈勃太空望远镜,并没有看到极光,与天王星清晰的极光形成鲜明对比[58][59]

    海王星的弓形震波,在磁层开始减缓太阳风的速度,发生在距离行星半径34.9倍之处。在磁层顶,磁层的压力抵销太阳风,磁层顶位于23-26.5倍海王星半径之处,磁尾至少延伸至72倍的海王星半径,并且还会伸展至更远[56]

    颜色

    海王星的大气层在光谱中呈淡蓝色,仅比天王星大气层的蓝色饱和度稍高。这两颗行星的早期伪色图片极大地夸大了海王星的颜色,使其在天王星的灰蓝色面前显得更加深蓝。这两颗行星也是用不同的摄像系统拍摄的,因此很难直接比较合成的图像。而且天文摄影设备对光谱的响应与人眼也有一定区别。之后,研究者重新审查了颜色,在2023年年底重新调整,使其标准化。[60][61]

    气候

    大暗斑(上面),滑行车(中间白色云彩)和小暗斑(底部)。

    海王星和天王星的典型气象活动的水平很不同。1986年,当旅行者2号航天器飞经天王星时,该行星视觉上色彩相当均匀,没有观察到明显天气现象,而在1989年旅行者2号飞越期间,海王星展现了其天气现象[65]。海王星的大气层有太阳系中的最高风速,据推测源于其内部热流的推动,它的天气特征是极为剧烈的风暴系统,其风速达到大约时速2,100公里的超音速[9]。在赤道带区域,更加典型的风速能达到大约时速1,200公里。根据蒲福风级即目前世界气象组织所建议的分级,地球风速最大为12级风仅约时速118公里。[66]

    2007年又发现海王星的南极比其表面平均温度(大约为−200℃)高出约10℃。这样高出10℃的温度足以让甲烷解冻释放到南极的平流层[67],而在其它区域海王星的上层大气层中甲烷是被冻结着的。这个相对热点的形成是因为海王星的轨道倾角使得其南极在过去的40年受到太阳光照射,而一海王星年相当于165地球年。随着海王星慢慢地移近太阳,南极将逐渐变暗,并且换成北极被太阳光照亮,这将使得甲烷释放区域从南极转移向北极。[68][69]

    风暴

    旅行者2号所拍摄到的大暗斑。

    1989年,美国航空航天局旅行者2号航天器在海王星南半球发现了大暗斑,它是一个长13000公里,宽6000公里的椭圆飓风系统[65],约为欧亚大陆的大小。这个风暴和木星上的大红斑类似,是一种反气旋风暴。然而在1994年11月2日,哈勃太空望远镜在海王星南半球没有看见大斑,反而在北半球发现了类似大暗斑的一场新的风暴[70]

    「滑行车」()是位于大暗斑更南面的另一场风暴,是一组白色云团。1989年,当旅行者2号造访海王星前的那几个月被发现时,就被命名了这个绰号:因为滑行车比大暗斑移动得更快[71]。后来获取的图像显示云的移动速度甚至比最初的云还要快。

    小暗斑是一场南部的飓风风暴,在1989年旅行者2号访问期间是海王星第二强的风暴。它最初是完全黑暗的,但在"旅行者"接近过程中,一个明亮的内核逐渐形成,并且出现在大多数最高分辨率的图像上[72]

    2018年,有一个新的主暗斑和较细的暗斑被识别和研究。[73]2023年,人类首次在地球表面观测海王星暗斑。[74]

    海王星的暗斑被认为于对流层中形成,且海拔比白色的云团低,[75]所以同为风暴的暗斑看起来才会像白色云团下的暗色孔洞。由于它们可以持续数个月,因此它们被认为是一种涡旋结构。[43]在对流层顶层附近的更亮和持续更久的甲烷云常常与暗斑伴随出现[76]。这种伴云的持续存在表明,一些之前出现过的暗斑可能会继续以气旋的形式存在,但不再可用肉眼识别。当黑斑迁移至过于接近赤道的时候,它们可能会由于某些未知机制而消失[77]

    内热

    因为海王星的轨道距离太阳很远,海王星从太阳得到的热量很少,所以海王星大气层顶端温度只有-218℃(55K),在大气压力为1巴时,温度为72K(−201.15℃),[78]而由大气层顶端向内温度稳定上升。和天王星类似,星球内部热量来源未知,但两者的差异显着:作为太阳系最外侧的行星,海王星只接收到天王星接收到的阳光的40%,[40]而且辐射出从太阳中接收到的能量的2.61倍[79],而天王星只有1.1倍[80]。但海王星内部能量却大到维持了太阳系所有行星中已知的最高速风暴。学者对其内部热源有几种解释,包括行星内核的放射热源[81]、行星生成时吸积盘塌缩能量的散热、还有重力波对大气层的扰动[82][83],但这些原因却难以同时解释天王星缺乏内部热源,却能同时保持两颗行星之间的明显相似性的原因[84]

    另一个导致海王星有如此猛烈的风暴的可能原因是,当风暴有足够的能量时,它们会产生湍流,进而减慢风速(正如在木星上那样)。然而在海王星上,太阳能过于微弱,就算开始刮风也不会产生湍流,从而能保持极高的速度。海王星释放的能量比它从太阳得到的还多,[85]因而这些风暴也可能有着尚未确定的内在能量来源。

    卫星

    海王星(上)和海卫一(下)
    海卫一彩色特写

    海王星有16颗已知的天然卫星[86]。其中最大的、也是唯一拥有足够质量成为球体海卫一在海王星被发现17天以后就被威廉·拉塞尔发现了。与其他太阳系行星的大型卫星不同,海卫一以逆行轨道运行,说明它是被海王星俘获的,并很可能曾经是一个柯伊伯带天体[87]。它与海王星的距离足够近,所以它被锁定在同步轨道上,它将缓慢地经螺旋轨道接近海王星,当它在大约三十六亿年后到达洛希极限,它最终将被海王星的引力撕裂[88]。海卫一是太阳系中被测量到的最冷的天体[89],温度为−235℃(38K)[90][91],这是因为海卫一的反照率非常高,使其反射大量而不是吸收阳光。[92][93]

    海卫一,与月球的对比
    名称 直径(公里) 质量(公斤) 轨道半径(公里) 轨道周期(日)
    海卫一 2700(月球的80%) 2.15×1022
    (月球的30%)
    354,800
    (月球的90%)
    5.877
    (月球的20%)
    海王星的卫星海卫八

    海王星第二个已知卫星(依发现顺序)是形状不规则的海卫二,它的轨道是太阳系中离心率最大的卫星轨道之一。从1989年7月到9月,旅行者2号发现了六个新的海王星卫星[94]。其中形状不规则的海卫八以拥有一个达到其极限密度而不会被它自身的引力变成球体的最大体积而闻名[95]。尽管它是质量第二大的海王星卫星,它的质量仅有海卫一质量的0.25%。最靠近海王星的四个卫星,海卫三海卫四海卫五海卫六,轨道在海王星的环之内。第二靠外卫星的海卫七在1981年被观察到,当时它遮挡了一颗恒星。起初掩星的原因被归结为行星环上的弧,但据1989年“旅行者2号”的观察,才发现是由卫星造成的。五个在2002年和2003之间发现的形状不规则卫星在2004年被公开。[96][97]而现在已知体积最小的一颗卫星,S/2004 N 1则于2013年7月宣布发现,这颗卫星是以结合多张哈勃太空望远镜的影像而被发现[98]。由于海王星得名于罗马神话的海神,它的卫星都以低等的海神命名。[32]

    针对海王星卫星发现日期的时间表,参见太阳系行星和它们的天然卫星的发现时间表

    行星环

    海王星的圆环,由旅行者2号拍摄

    这颗蓝色行星有着暗淡的天蓝色圆环,但与土星比起来相去甚远[99]。这些环可能由涂有硅酸盐或碳基材料的冰粒组成,可能令它们呈现微红色色调[100]。三个主要环是伽勒环、勒威耶环和拉塞尔环。狭窄的亚当斯环距海王星中心63,000公里外,勒维耶环距中心53,000公里,更宽、更暗的伽勒环距中心42,000公里。勒维耶环外侧的暗淡圆环被命名为拉塞尔;再往外是距中心57,000公里的阿拉戈[101]

    爱德华·奎南为首的团队在1968年发现第一个环[102][103],这些环在1980年代初期曾被认为也许是不完整的[104],证据出现在1984年的一次恒星掩星期间,当时环在消失时遮掩了一颗行星,但在出现时却没有[105]。然而,“旅行者2号”的发现表明并非如此,旅行者2号在1989年拍摄的图像发现了几个微弱的光环并补全不完整的部分,解决了这个问题。

    这些行星环有一个特别的「堆状」结构。[106]

    最外层的圆环亚当斯,包含五段显着的弧,现在名为“Courage”、“Liberté”、“Egalité 1”、“Egalité 2”和“Fraternité”(勇气、自由、平等、博爱)[107]。 弧的存在难以理解,因为运动定律预示弧应在不长的时间内变成平均的圆环。目前天文学家认为环内侧的卫星海卫六的引力作用束缚了弧的运动。[108][109]

    2005年新发表的在地球上观察的结果表明,海王星的环比原先以为的更不稳定。凯克天文台在2002年和2003年拍摄的图像显示,与"旅行者2号"拍摄时相比,海王星环发生了显着的退化,特别是“自由弧”,也许在一个世纪左右就会消失。[110]

    观测

    在1980年至2000年间,主要因为季节的变化,海王星亮了10%[111]。在2024年,海王星的亮度在视星等+7.67和+7.89之间,平均值为7.78,标准差为0.06[112]。而在1980年之前,这颗行星则有8.0的视星等。[112]海王星由于太过暗淡,肉眼不可见,比木星伽利略卫星矮行星谷神星小行星灶神星智神星虹神星婚神星韶神星都暗。在天文望远镜或优质双筒望远镜中观察海王星的话,海王星会显现为一个小小的与天王星很相似的蓝色圆盘。蓝色色调是来自海王星大气中的甲烷[113]

    海王星离地球较远,角直径只有2.2-2.4角秒,是太阳系行星中最小的[3][114]。它的视径之小给研究造成不少困难,因为从望远镜中获得的数据相当有限,这情况因为哈伯太空望远镜、大型地基望远镜与自适应光学技术出现才获得改善[115][116][117]。1997年,使用了自适应光学技术的望远镜在夏威夷首次对海王星作出了科学性的观测。[118]自1990年代中期以来,哈伯太空望远镜和其他地面望远镜都发现了不少太阳系的星体,包括外行星的卫星,例如在2004至2005年间发现的五颗直径介于38至61公里的海王星卫星。[119]

    由地球上观测海王星,每367天便可以看到海王星的逆行运动,导致在每次期间,海王星都会以相对背景恒星的循环运动。这运动令海王星于2010年4月和7月、2011年10月和11月在天空中接近1846年行星初次被发现时的座标[120]

    无线电频段对海王星的观测表明,海王星是一些连续物质发射和不规则爆发的来源,这些来源都被认为源自海王星的旋转磁场[42]。而从红外线区观测,可以看到海王星的风暴在较冷的背景下显得明亮,使得这些特征的大小和形状易于追踪[121]

    探测

    1977年8月20日—2000年12月30日旅行者2号飞行轨道  旅行者2号 ·   地球 ·   木星 ·   土星 ·   天王星 ·   海王星 ·   太阳

    1989年8月25日,旅行者2号在此时最接近海王星,而旅行者2号是直到目前为止唯一造访过海王星的人类太空船。因为这是旅行者2号飞船所要飞近的最后一个主要行星,它以近距离飞越海卫一,而不考虑轨道方向的变动,正如旅行者1号飞越土星时采用接近土卫六的轨道以观察卫星的行动。1989年,PBS用从“旅行者2号”传回地球的图像作了一个名为Neptune All Night的整晚节目。[122]

    旅行者2号在1989年8月25日进入距离海王星大气层4,400公里以内的地方,在这之前近距离飞越了海卫二,并在同一天晚些时侯靠近海卫一[123]

    这次飞越发现了海王星拥有磁场,而磁场也类似天王星的一般倾斜。旅行者2号还发现了六颗新卫星,也表明海王星有一个非常活跃的天气系统,并发现海王星环并不止一个[94][123]

    这次飞越也首次准确测量海王星的质量,结果比以前估计的要少0.5%。这反驳了一个认为第九行星干扰海王星和天王星轨道的假设[124][125]。这次探测也发现了大暗斑

    2018年,中国国家航天局提出神梭计划[126],由两个探测器以不同路径探索日球层顶,第二个探测器IHP-2预定会在2038年1月在距离海王星云顶1,000公里上飞掠,并可能在飞掠前释放大气撞击器[127],之后,它将继续运行其任务,穿过古柏带,前往日球层顶。

    轨道与自转

    海王星(红线)在地球每运行164.79圈时绕太阳(中心)运行一周,浅蓝色物体代表天王星

    海王星与太阳之间的平均距离为45亿公里(30.1天文单位)。海王星的轨道周期(年)大约相当于164.79地球年,并有着±0.1年的变动[3]。2011年7月12日,海王星自发现以来首次完成一个完整轨道[128],回到1846年被发现时的那个点。[120]由于地球处于其365.25天周期轨道的另一处,以致海王星在这次回归在天空中的位置和它在1846年被发现时的那个位置不一样。由于太阳也和太阳系重心有相对运动,在7月11日,海王星也不在1846年被发现时的确切位置,当使用常用的日心座标系,该位置会在7月12日才抵达。[129][130][131][120]

    海王星的轨道偏心率为0.008678,使其成为太阳系中仅次金星轨道第二圆的行星[132]

    海王星的自转周期(日)大约是16.11小时[129]。海王星的自转轴倾角为28.32°[133],与地球(23.45°)和火星(25°)相近,所以海王星有与地球相似的季节变化[134]。海王星日与地球日时间长度的不同太少,以致在海王星漫长的一年中,昼夜变化微小。由于海王星是气体行星,其大气层会有不同的自转周期。在赤道附近,自转周期为18小时,而在极地则只有12小时,这差异在太阳系中是最明显的[135],并会导致严重的纬度风切[43]

    注释

    1. 以下轨道参数参考J2000标准历元时海王星系统的质心,且皆为瞬时吻切轨道值。与行星中心相比,质心不会因卫星的运动而每天经历明显的变化。

    参考文献

    1. . Solarviews. [2007-08-13]. (原始内容存档于2011-08-17).
    2. Yeomans, Donald K. . NASA JPL. 2006-07-13 [2007-08-08]. (原始内容存档于2007-03-28). — 进入网站后,前往“web interface”,之后选择“Ephemeris Type: ELEMENTS”、“Target Body: Neptune Barycenter”和“Center: Sun”。
    3. Williams, Dr. David R. . NASA. 2004-09-01 [2007-08-14]. (原始内容存档于2011-08-17).
    4. Seidelmann, P. Kenneth; Archinal, B. A.; A’hearn, M. F.; et.al. . Celestial Mech. Dyn. Astr. 2007, 90: 155–180 [2007-10-16]. Bibcode:2007CeMDA..98..155S. doi:10.1007/s10569-007-9072-y. (原始内容存档于2019-05-19).
    5. Refers to the level of 1 bar atmospheric pressure
    6. . [2007-10-16]. (原始内容存档于2017-12-09).
    7. Munsell, Kirk; Smith, Harman; Harvey, Samantha. . Solar System Exploration. NASA. 2007-11-13 [2008-02-20]. (原始内容存档于2008-03-03).
    8. info@noirlab.edu. . www.noirlab.edu. 2022-05-31 [2022-07-30]. (原始内容存档于2022-07-30) (英语).
    9. Suomi, V. E.; Limaye, S. S.; Johnson, D. R. . Science. 1991, 251: 929–932 [2007-10-23]. Bibcode:1991Sci...251..929S. doi:10.1126/science.251.4996.929. (原始内容存档于2007-10-11).
    10. Hubbard, W. B. . Science. 1997, 275 (5304): 1279–1280 [2008-02-19]. PMID 9064785. doi:10.1126/science.275.5304.1279. (原始内容存档于2008-06-21).
    11. Nettelmann, N.; French, M.; Holst, B.; Redmer, R. (PDF). University of Rostock. [2008-02-25]. (原始内容 (PDF)存档于2011-07-18).
    12. Chang, Kenneth. . The New York Times. 2014-10-18 [2014-10-21]. (原始内容存档于2014-10-28).
    13. . NASA Solar System Exploration. [2020-02-03]. (原始内容存档于2020-07-17). In 1989, NASA's Voyager 2 became the first-and only-spacecraft to study Neptune up close.
    14. T. R. Spilker and A. P. Ingersoll(2004年11月9日). Outstanding Science in the Neptune System From an Aerocaptured Vision Mission 存盘,存档日期2007-10-27.. 36th DPS Meeting, Session 14 Future Missions.
    15. . WebbTelescope.org. [2022-10-16]. (原始内容存档于2022-09-27) (英语).
    16. Hirschfeld, Alan. . 纽约,纽约: Henry Holt. 2001. ISBN 0-8050-7133-4.
    17. Littmann, Mark; Standish, E.M. . Courier Dover Publications. 2004. ISBN 0-4864-3602-0.
    18. Britt, Robert Roy. . MSNBC News. 2009 [2009-07-10]. (原始内容存档于2012-10-19).
    19. A. Bouvard (1821), Tables astronomiques publiées par le Bureau des Longitudes de France 页面存档备份,存于, Paris, FR: Bachelier
    20. Airy, G.B. . Monthly Notices of the Royal Astronomical Society. 1846-11-13, 7 (10): 121–44 [2019-06-12]. Bibcode:1846MNRAS...7..121A. doi:10.1002/asna.18470251002. (原始内容存档于2021-09-29).
    21. Challis, Rev. J. . Monthly Notices of the Royal Astronomical Society. 1846-11-13, 7 (9): 145–149 [2019-08-25]. Bibcode:1846MNRAS...7..145C. doi:10.1093/mnras/7.9.145可免费查阅. (原始内容存档 (PDF)于2019-05-04).
    22. Gaherty, Geoff. . space.com. 2011-07-12 [2019-09-03]. (原始内容存档于2019-08-25).
    23. Levenson, Thomas. . Random House. 2015: 38.
    24. Sack, Harald. . scihi.org. 2017-12-12 [2021-11-15].
    25. Galle, J.G. . Monthly Notices of the Royal Astronomical Society. 1846-11-13, 7 (9): 153. Bibcode:1846MNRAS...7..153G. doi:10.1093/mnras/7.9.153可免费查阅.
    26. Kollerstrom, Nick. . Unuiversity College London. 2001 [2007-03-19]. (原始内容存档于2005-11-11).
    27. DIO 9.1 页面存档备份,存于(1999年6月); William Sheehan, Nicholas Kollerstrom, Craig B. Waff(2004年12月). The Case of the Pilfered Planet - Did the British steal Neptune? 页面存档备份,存于 Scientific American.
    28. Moore (2000):206
    29. Baum, Richard; Sheehan, William. . Basic Books. 2003: 109–10. ISBN 978-0-7382-0889-3.
    30. Gingerich, Owen. . Astronomical Society of the Pacific Leaflets. October 1958, 8 (352): 9–15. Bibcode:1958ASPL....8....9G.
    31. Hind, J. R. . Astronomische Nachrichten. 1847, 25: 309 [2007-10-24]. Bibcode:1847AN.....25..309.. (原始内容存档于2008-09-08). Smithsonian/NASA Astrophysics Data System (ADS).
    32. . Gazetteer of Planetary Nomenclature. U.S. Geological Survey. 2008-12-17 [2012-03-26]. (原始内容存档于2018-08-09).
    33. Using Eyepiece & Photographic Nebular Filters, Part 2 (October 1997) 页面存档备份,存于. Hamilton Amateur Astronomers at amateurastronomy.org.
    34. . nineplanets.org. [2010-04-08]. (原始内容存档于2010-04-07).
    35. . Kenh14. 2010-10-31 [2018-07-30]. (原始内容存档于2018-07-30) (越南语).
    36. . Astrobiology Magazine. 2006年5月21日 [2007-08-06]. (原始内容存档于2007-09-29).
    37. Atreya, S.; Egeler, P.; Baines, K. (pdf). Geophysical Research Abstracts. 2006, 8: 05179 [2007-12-05]. (原始内容存档 (PDF)于2019-09-18).
    38. Crisp, D.; Hammel, H. B. . Hubble News Center. 1995-06-14 [2007-04-22]. (原始内容存档于2016-03-29).
    39. NASA Science Editorial Team. . NASA. 2022-05-31 [2023-10-30].
    40. Lunine, Jonathan I. (PDF). Lunar and Planetary Observatory, University of Arizona. 1993 [2008-03-10]. (原始内容存档于2011-08-17).
    41. Andrews, Robin George. . The New York Times. 2023-08-18 [2023-08-21]. (原始内容存档于2023-08-18).
    42. Elkins-Tanton (2006):79–83.
    43. Max, C.E.; Macintosh, B.A.; Gibbard, S.G.; Gavel, D.T.; et al. . The Astronomical Journal. 2003, 125 (1): 364–75. Bibcode:2003AJ....125..364M. doi:10.1086/344943可免费查阅.
    44. Gianopoulos, Andrea. . NASA. 2023-08-16 [2023-08-24].
    45. Chavez, Erandi; de Pater, Imke; Redwing, Erin; Molter, Edward M.; Roman, Michael T.; Zorzi, Andrea; Alvarez, Carlos; Campbell, Randy; de Kleer, Katherine; Hueso, Ricardo; Wong, Michael H.; Gates, Elinor; Lynam, Paul David; Davies, Ashley G.; Aycock, Joel; Mcilroy, Jason; Pelletier, John; Ridenour, Anthony; Stickel, Terry. . Icarus. 2023-11-01, 404: 115667 [2023-08-24]. Bibcode:2023Icar..40415667C. ISSN 0019-1035. S2CID 259515455. arXiv:2307.08157可免费查阅. doi:10.1016/j.icarus.2023.115667. The clear positive correlation we find between cloud activity and Solar Lyman-Alpha (121.56 nm) irradiance lends support to the theory that the periodicity in Neptune’s cloud activity results from photochemical cloud/haze production triggered by Solar ultraviolet emissions.
    46. Encrenaz, Therese. . Planet. Space Sci. 2003, 51: 89–103 [2011-02-14]. Bibcode:2003P&SS...51...89E. doi:10.1016/S0032-0633(02)00145-9. (原始内容存档于2008-02-21).
    47. Broadfoot, A.L.; Atreya, S.K.; Bertaux, J.L. et al. (pdf). Science. 1999, 246 (4936): 1459–1456 [2011-02-14]. Bibcode:1989Sci...246.1459B. PMID 17756000. doi:10.1126/science.246.4936.1459. (原始内容存档 (PDF)于2018-05-04).
    48. Herbert, Floyd; Sandel, Bill R. . Planet.Space Sci. 1999, 47: 1119–1139 [2011-02-14]. Bibcode:1999P&SS...47.1119H. doi:10.1016/S0032-0633(98)00142-1. (原始内容存档于2008-02-21).
    49. Stanley, Sabine; Bloxham, Jeremy. . Nature. 2004年3月11日, 428: 151–153. Bibcode:2004Natur.428..151S. doi:10.1038/nature02376.
    50. Holleman, Arnold Frederik; Wiberg, Egon, Wiberg, Nils , 编, , 由Eagleson, Mary; Brewer, William翻译, San Diego/Berlin: Academic Press/De Gruyter, 2001, ISBN 0-12-352651-5
    51. Stevenson, D. J. . Nature (Nature Publishing Group). 1975-11-20, 258: 222–223 [2012-01-13]. Bibcode:1975Natur.258..222S. doi:10.1038/258222a0. (原始内容存档于2014-11-04).
    52. Bernal, M. J. M.; Massey, H. S. W. (PDF). Monthly Notices of the Royal Astronomical Society (Wiley-Blackwell for the Royal Astronomical Society). 1954-02-03, 114: 172–179 [2012-01-13]. Bibcode:1954MNRAS.114..172B. (原始内容存档 (PDF)于2018-01-12).
    53. Porter, W. S., Astr. J., 66, 243–245 (1961). 5.
    54. Ramsey, W. H., Planet. Space Sci., 15, 1609–1623 (1967).
    55. Connerney, J.E.P.; Acuna, Mario H.; Ness, Norman F. . Journal of Geophysics Research. 1991, 96: 19,023–42 [2009-07-04]. (原始内容存档于2016-06-03).
    56. Ness, N. F.; Acuña, M. H.; Burlaga, L. F.; Connerney, J. E. P.; Lepping, R. P.; Neubauer, F. M. . Science. 1989, 246 (4936): 1473–1478 [2008-02-25]. Bibcode:1989Sci...246.1473N. PMID 17756002. doi:10.1126/science.246.4936.1473. (原始内容存档于2008-06-21).
    57. Russell, C. T.; Luhmann, J. G. . University of California, Los Angeles. 1997 [2006-08-10]. (原始内容存档于2019-06-29).
    58. Lamy, L. . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (The Royal Society). 2020-11-09, 378 (2187): 20190481. Bibcode:2020RSPTA.37890481L. ISSN 1364-503X. PMC 7658782可免费查阅. PMID 33161867. doi:10.1098/rsta.2019.0481可免费查阅.
    59. . European Space Agency. 2004-08-11 [2010-08-05]. (原始内容存档于2012-10-19).
    60. . science.nasa.gov. [2024-03-14] (英语).
    61. Irwin, Patrick G. J.; Dobinson, Jack; James, Arjuna; Teanby, Nicholas A.; Simon, Amy A.; Fletcher, Leigh N.; Roman, Michael T.; Orton, Glenn S.; Wong, Michael H.; Toledo, Daniel; Pérez-Hoyos, Santiago; Beck, Julie. . Monthly Notices of the Royal Astronomical Society. February 2024, 527 (4): 11521–11538. ISSN 0035-8711. doi:10.1093/mnras/stad3761可免费查阅 (英语).
    62. . photojournal.jpl.nasa.gov. [2024-02-05]. (原始内容存档于2023-07-22).
    63. . The Planetary Society. [2024-02-05]. (原始内容存档于2024-02-05) (英语).
    64. Oxford, University of. . phys.org. [2024-02-05]. (原始内容存档于2024-02-05) (英语).
    65. Lavoie, Sue. . NASA JPL. 2000-02-16 [2008-02-28]. (原始内容存档于2013-08-05).
    66. Hammel, H.B.; et al. . Science. 1989, 245: 1367–1369 [2007-12-05]. Bibcode:1989Sci...245.1367H. doi:10.1126/science.245.4924.1367. (原始内容存档于2008-01-05).
    67. Orton, G.S.; Encrenaz T.; Leyrat C.; Puetter, R.; et al. . Astronomy and Astrophysics. 2007, 473 (1): L5–L8. Bibcode:2007A&A...473L...5O. S2CID 54996279. doi:10.1051/0004-6361:20078277可免费查阅.
    68. . Yahoo! News. 2007-09-19 [2007-09-20].
    69. Orton, Glenn; Encrenaz, Thérèse. . ESO. 2007-09-18 [2007-09-20]. (原始内容存档于2010-03-23).
    70. Hammel, H.B.; Lockwood, G.W.; Mills, J.R.; Barnet, C.D. . Science. 1995, 268 (5218): 1740–42. Bibcode:1995Sci...268.1740H. PMID 17834994. S2CID 11688794. doi:10.1126/science.268.5218.1740.
    71. Burgess (1991):64–70.
    72. Lavoie, Sue. . NASA JPL. 1996-01-29 [2008-02-28]. (原始内容存档于2013-09-27).
    73. Shannon Stirone. . The New York Times. 2020-12-22 [2020-12-22]. (原始内容存档于2020-12-22).
    74. information@eso.org. . www.eso.org. [2023-08-26] (英语).
    75. S.G., Gibbard; de Pater, I.; Roe, H.G.; Martin, S.; et al. (PDF). Icarus. 2003, 166 (2): 359–74 [2008-02-26]. Bibcode:2003Icar..166..359G. doi:10.1016/j.icarus.2003.07.006. (原始内容 (PDF)存档于2012-02-20).
    76. Stratman, P.W.; Showman, A.P.; Dowling, T.E.; Sromovsky, L.A. (PDF). Icarus. 2001, 151 (2): 275–85 [2008-02-26]. Bibcode:1998Icar..132..239L. doi:10.1006/icar.1998.5918. (原始内容存档 (PDF)于2008-02-27).
    77. Sromovsky, L.A.; Fry, P.M.; Dowling, T.E.; Baines, K.H. . Bulletin of the American Astronomical Society. 2000, 32: 1005. Bibcode:2000DPS....32.0903S.
    78. Lindal, Gunnar F. . Astronomical Journal. 1992, 103: 967–82. Bibcode:1992AJ....103..967L. doi:10.1086/116119可免费查阅.
    79. Pearl, J.C.; Conrath, B.J. . Journal of Geophysical Research: Space Physics. 1991, 96: 18,921–30. Bibcode:1991JGR....9618921P. doi:10.1029/91ja01087.
    80. . 3750 – Planets, Moons & Rings. Colorado University, Boulder. 2004 [2008-03-13]. (原始内容存档于2008-06-21).
    81. Williams, Sam. . 2004 [2007-10-10]. (原始内容 (DOC)存档于2007-10-25).
    82. McHugh, J. P., Computation of Gravity Waves near the Tropopause 存盘,存档日期2007-10-27., AAS/Division for Planetary Sciences Meeting Abstracts, p. 53.07, September, 1999
    83. McHugh, J. P. and Friedson, A. J., Neptune's Energy Crisis: Gravity Wave Heating of the Stratosphere of Neptune, Bulletin of the American Astronomical Society, p.1078, September, 1996
    84. Imke de Pater and Jack J. Lissauer (2001), Planetary Sciences 存盘,存档日期2021-09-29., 1st edition, p. 224.
    85. Beebe R. . Planetary Report. 1992, 12: 18–21 [2007-12-05]. Bibcode:1992PlR....12b..18B. (原始内容存档于2008-01-05).
    86. Kelly Beatty. . Sky & Telescope. 2013-07-15 [2013-07-15]. (原始内容存档于2013-07-16).
    87. Agnor, Craig B.; Hamilton, Douglas P. . Nature. 2006, 441 (7090): 192–94. Bibcode:2006Natur.441..192A. PMID 16688170. S2CID 4420518. doi:10.1038/nature04792.
    88. Chyba, Christopher F.; Jankowski, D.G.; Nicholson, P.D. . Astronomy and Astrophysics. 1989, 219 (1–2): L23–L26. Bibcode:1989A&A...219L..23C.
    89. Wilford, John N. . The New York Times. 1989-08-29 [2008-02-29]. (原始内容存档于2008-12-10).
    90. . [2024-01-07]. (原始内容存档于2024-01-07).
    91. Nelson, R.M.; Smythe, W.D.; Wallis, B.D.; Horn, L.J.; et al. . Science. 1990, 250 (4979): 429–31. Bibcode:1990Sci...250..429N. PMID 17793020. S2CID 20022185. doi:10.1126/science.250.4979.429.
    92. . 2016-10-07 [2024-01-07]. (原始内容存档于2024-01-07).
    93. . January 2010 [2024-01-07]. (原始内容存档于2024-01-07).
    94. Stone, E.C.; Miner, E.D. . Science. 1989, 246 (4936): 1417–21. Bibcode:1989Sci...246.1417S. PMID 17755996. S2CID 9367553. doi:10.1126/science.246.4936.1417.
    95. Brown, Michael E. . California Institute of Technology, Department of Geological Sciences. [2008-02-09]. (原始内容存档于2011-07-19).
    96. Holman, Matthew J.; et al. . Nature. 2004-08-19, 430: 865–867 [2007-12-05]. Bibcode:2004Natur.430..865H. doi:10.1038/nature02832. (原始内容存档于2008-01-02).
    97. . BBC News. 2004-08-18 [2007-08-06]. (原始内容存档于2007-08-08).
    98. Grush, Loren. . The Verge. 2019-02-20 [2019-02-22]. (原始内容存档于2019-02-21).
    99. O"Callaghan, Jonathan. . The New York Times. 2022-09-21 [2022-09-23]. (原始内容存档于2022-09-22).
    100. Cruikshank, Dale P. . University of Arizona Press. 1996: 703–804. ISBN 978-0-8165-1525-7.
    101. Gazetteer of Planetary Nomenclature Ring and Ring Gap Nomenclature (December 8, 2004) 页面存档备份,存于. USGS - Astrogeology Research Program.
    102. Wilford, John N. . The New York Times. 1982-06-10 [2008-02-29]. (原始内容存档于2008-12-10).
    103. Guinan, E.F.; Harris, C.C.; Maloney, F.P. . Bulletin of the American Astronomical Society. 1982, 14: 658. Bibcode:1982BAAS...14..658G.
    104. Goldreich, P.; Tremaine, S.; Borderies, N.E.F. (PDF). Astronomical Journal. 1986, 92: 490–94 [2019-06-12]. Bibcode:1986AJ.....92..490G. doi:10.1086/114178. (原始内容存档 (PDF)于2021-09-29).
    105. Nicholson, P.D.; et al. . Icarus. 1990, 87 (1): 1–39. Bibcode:1990Icar...87....1N. doi:10.1016/0019-1035(90)90020-A可免费查阅.
    106. . The Planetary Society. 2007 [2007-10-11]. (原始内容存档于2006-02-08).
    107. Cox, Arthur N. . Springer. 2001. ISBN 978-0-387-98746-0.
    108. Munsell, Kirk; Smith, Harman; Harvey, Samantha. . Solar System Exploration. NASA. 2007-11-13 [2008-02-29]. (原始内容存档于2012-07-04).
    109. Salo, Heikki; Hänninen, Jyrki. . Science. 1998, 282 (5391): 1102–04. Bibcode:1998Sci...282.1102S. PMID 9804544. doi:10.1126/science.282.5391.1102.
    110. . New Scientist. 2005-03-26 [2007-08-06]. (原始内容存档于2008-10-08).
    111. Schmude, R.W. Jr.; Baker, R.E.; Fox, J.; Krobusek, B.A.; Pavlov, H.; Mallama, A. (unpublished manuscript). 2016-03-29. arXiv:1604.00518可免费查阅.
    112. Mallama, A.; Hilton, J.L. . Astronomy and Computing. 2018, 25: 10–24. Bibcode:2018A&C....25...10M. S2CID 69912809. arXiv:1808.01973可免费查阅. doi:10.1016/j.ascom.2018.08.002.
    113. Moore, Patrick. . 2000: 207.
    114. Espenak, Fred. . NASA. 2005-07-20 [2008-03-01]. (原始内容存档于2012-12-05).
    115. Cruikshank, D.P. . Astrophysical Journal Letters. 1978-03-01, 220: L57–L59. Bibcode:1978ApJ...220L..57C. doi:10.1086/182636.
    116. Max, C.; MacIntosh, B.; Gibbard, S.; Roe, H.; et al. . Bulletin of the American Astronomical Society. 1999, 31: 1512. Bibcode:1999AAS...195.9302M.
    117. Nemiroff, R.; Bonnell, J. (编). . Astronomy Picture of the Day. NASA. 2000-02-18.
    118. Roddier, F.; Roddier, C.; Brahic, A.; Dumas, C.; Graves, J. E.; Northcott, M. J.; Owen, T. . Planetary and Space Science. 1997-08-01, 45 (8): 1031–1036 [2024-02-01]. Bibcode:1997P&SS...45.1031R. CiteSeerX 10.1.1.66.7754可免费查阅. ISSN 0032-0633. doi:10.1016/S0032-0633(97)00026-3. (原始内容存档于2024-02-01).
    119. Engvold, Oddbjorn. . Cambridge University Press. 2007-05-10: 147f [2023-03-15]. ISBN 978-0-521-85604-1. (原始内容存档于2023-05-11) (英语).
    120. Anonymous. . 2007-11-16 [2008-02-25]. (原始内容存档于2013-05-02).—Numbers generated using the Solar System Dynamics Group, Horizons On-Line Ephemeris System.
    121. Gibbard, S.G.; Roe, H.; de Pater, I.; Macintosh, B.; et al. . Icarus. 1999, 156 (1): 1–15 [2019-06-12]. Bibcode:2002Icar..156....1G. doi:10.1006/icar.2001.6766. (原始内容存档于2018-10-23).
    122. . SETI Institute. [2007-10-03]. (原始内容存档于2007-11-03).
    123. Burgess(1991):46–55.
    124. Tom Standage (2000). The Neptune File: A Story of Astronomical Rivalry and the Pioneers of Planet Hunting. New York: Walker. p. 188. ISBN 978-0-8027-1363-6.
    125. Chris Gebhardt; Jeff Goldader. . NASASpaceflight. 2011-08-20 [2016-01-22]. (原始内容存档于2016-02-19).
    126. Wu, Weiren; Yu, Dengyun; Huang, Jiangchuan; Zong, Qiugang; Wang, Chi; Yu, Guobin; He, Rongwei; Wang, Qian; Kang, Yan; Meng, Linzhi; Wu, Ke; He, Jiansen; Li, Hui. . Scientia Sinica Informationis. 2019-01-09, 49 (1): 1. ISSN 2095-9486. doi:10.1360/N112018-00273可免费查阅 (英语).
    127. Jones, Andrew. . SpaceNews. 2021-04-16 [2021-04-29]. (原始内容存档于2021-05-15).
    128. McKie, Robin. . The Guardian. 2011-07-09 [2016-12-15]. (原始内容存档于2016-08-23).
    129. Munsell, K.; Smith, H.; Harvey, S. . NASA. 2007-11-13 [2007-08-14]. (原始内容存档于2014-04-09).
    130. Atkinson, Nancy. . Universe Today. 2010-08-26 [2024-02-01]. (原始内容存档于2023-09-29) (美国英语).
    131. Lakdawalla, Emily [@elakdawalla]. (推文). 2010-08-19 Twitter.
    132. . [2024-01-02]. (原始内容存档于2024-02-02).
    133. Williams, David R. . NASA. 2005-01-06 [2008-02-28]. (原始内容存档于2008-09-25).
    134. Villard, Ray; Devitt, Terry. . Hubble News Center. 2003-05-15 [2008-02-26]. (原始内容存档于2008-02-28).
    135. Hubbard, W.B.; Nellis, W.J.; Mitchell, A.C.; Holmes, N.C.; et al. . Science. 1991, 253 (5020): 648–51 [2019-06-12]. Bibcode:1991Sci...253..648H. PMID 17772369. S2CID 20752830. doi:10.1126/science.253.5020.648. (原始内容存档于2018-10-23).

    外部链接

    从维基百科的姊妹计划
    了解更多有关
    Neptune”的内容
    维基词典 维基词典上的字词解释
    维基共享资源 维基共享资源上的多媒体资源
    维基新闻 维基新闻上的新闻
    维基语录 维基语录上的名言
    维基文库 维基文库上的原始文献
    维基教科书 维基教科书上的教科书和手册
    维基学院 维基学院上的学习资源

    参见

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.