可计算数
定义
如果一个实数能被某个可计算函数 以下述方式来近似,那么 就是一个可计算数:给定任何正整数,函数值都满足:
不可计算数
非可计算的实数即为不可计算数。1975年,计算机学家格里高里·柴廷做了一个有趣的实验:选择任意一种编程语言,随意输入一段代码,该代码能够成功运行并且能够在有限时间内终止的几率即为柴廷常数,这个数为一个经典的不可计算数。[1]
相关书籍
- . 清华大学出版社有限公司. 2004: 119 [2018-06-30]. ISBN 978-7-3020-8560-7. (原始内容存档于2019-06-17).
参考数据
引用
- . 2011-03-09 [2018-06-30]. (原始内容存档于2019-06-05).
来源
- Oliver Aberth 1968, Analysis in the Computable Number Field, Journal of the Association for Computing Machinery (JACM), vol 15, iss 2, pp 276–299. This paper describes the development of the calculus over the computable number field.
- Errett Bishop and Douglas Bridges, Constructive Analysis, Springer, 1985, ISBN 0-387-15066-8
- Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics, Oxford, 1987.
- Jeffry L. Hirst, Representations of reals in reverse mathematics, Bulletin of the Polish Academy of Sciences, Mathematics, 55, (2007) 303–316.
- 马文·闵斯基 1967, Computation: Finite and Infinite Machines, Prentice-Hall, Inc. Englewood Cliffs, NJ. No ISBN. Library of Congress Card Catalog No. 67-12342. His chapter §9 "The Computable Real Numbers" expands on the topics of this article.
- E. Specker, "Nicht konstruktiv beweisbare Sätze der Analysis" J. Symbol. Logic, 14 (1949) pp. 145–158
- Turing, A.M., , Proceedings of the London Mathematical Society, 2 42 (1), 1936, 42 (1): 230–651937 [2018-08-22], doi:10.1112/plms/s2-42.1.230, (原始内容存档于2004-04-03) (and Turing, A.M., , Proceedings of the London Mathematical Society, 2 43 (6), 1938, 43 (6): 544–61937, doi:10.1112/plms/s2-43.6.544). Computable numbers (and Turing's a-machines) were introduced in this paper; the definition of computable numbers uses infinite decimal sequences.
- Klaus Weihrauch 2000, Computable analysis, Texts in theoretical computer science, Springer, ISBN 3-540-66817-9. §1.3.2 introduces the definition by nested sequences of intervals converging to the singleton real. Other representations are discussed in §4.1.
- Klaus Weihrauch, A simple introduction to computable analysis
- H. Gordon Rice. "Recursive real numbers." Proceedings of the American Mathematical Society 5.5 (1954): 784-791.
- V. Stoltenberg-Hansen, J. V. Tucker "Computable Rings and Fields" in Handbook of computability theory edited by E.R. Griffor. Elsevier 1999
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.