细胞壁
细胞壁(英语:)是植物细胞的外层,在细胞膜的外面,细胞壁之厚薄常因组织、功能不同而异。它可以是坚韧的,有弹性,和有时坚硬的。它提供细胞既有结构支撑和保护,例如将动物细胞放入纯水,会进水量比出水量多而造成爆破;但植物细胞因为有细胞壁,顶多只会膨胀,不至爆破。细胞壁同时也作为一种过滤机制。植物、真菌(菌物)、藻类和原核生物都具有细胞壁,而支原体属细胞不具有细胞壁。
细胞壁的组成随着不同物种而变化,并可能取决于细胞的类型和发展阶段。陆生植物的初生细胞壁()的组成是多糖类的纤维素,半纤维素和果胶。在细菌中,细胞壁的组成是肽聚糖。古菌细胞壁有各种组分物组成,并可能由糖蛋白的S层,假肽聚糖或多糖组成的。真菌具有N-乙酰葡萄糖胺的聚合物几丁质组成的细胞壁,和藻类通常具有糖蛋白和多糖组成的细胞壁。与众不同的是,硅藻具有一个由生物硅组成的细胞壁[1]。其他辅助分子往往也锚定到细胞壁中,例如木质素和几丁质。
成分与功能
细胞壁是在细胞分裂、生长和分化过程中形成的,主要成分是纤维素和果胶,可用于支撑和维持植物细胞的形状。细胞壁分为三层,初生细胞壁()和次生细胞壁()。细胞与细胞之间有胞间层()分隔。所有植物细胞都有初生壁,其外面就是胞间层。次生壁在初生壁的里面,是在细胞停止生长后分泌形成的,可以增加细胞壁的厚度和强度,不易受到病原物多糖降解酶的直接攻击,但不是所有的细胞都具有次生壁。
次生壁又分内(S3)、中(S2)、外(S1)三层(在内层里面,有时还可出现一层),外层和内层都很薄,只有中层最厚,占次生壁厚度的70~90%,主要成分也是半纤维素、纤维素和木质素(lignin),极少含果胶,久之会开始进行不同程度的木质化,木聚糖逐渐分布于整个次生壁中,而木葡聚糖则局限分布于初生壁和胞间层,另外,角质(cutin)和木栓质(suberin)通常会埋入次生壁中。次生壁越厚,壁内的细胞腔就越小,等到细胞完全成熟后细胞腔呈现椭圆形。
植物的细胞壁
植物细胞的壁必须具有足够的抗拉强度,以承受几倍大气压的内部渗透压,这是由细胞内部溶液和外部溶液之间的溶质浓度差异引起的[2]。 植物细胞壁的厚度在0.1到几μm之间变化[3]。
分层


在植物细胞壁中可以发现多达三个层[4]:
- 初生细胞壁,通常是在细胞生长时形成的薄的,柔性的和可延伸的层。
- 次生细胞壁,在细胞完全生长后在初生细胞壁内形成的厚层。 在所有细胞类型中均已发现。 一些细胞,例如木质部中的传导细胞,具有含有木质素的第二壁,使细胞壁增强并防水。
- 中胶层(Middle layer),一层富含果胶。 该最外层形成相邻植物细胞之间的界面并将它们粘合在一起。
成分
在初生(生长)植物细胞壁中,主要的碳水化合物是纤维素,半纤维素和果胶。 纤维素微纤维通过半纤维素系链连接以形成纤维素 - 半纤维素网络,其嵌入果胶基质中。 在初生细胞壁中最常见的半纤维素是木葡聚糖[5]。在草的细胞壁中,木葡聚糖和果胶的丰度减少,部分被另一种半纤维素的葡糖醛酸阿拉伯木聚糖取代。 原代细胞壁特征性地通过称为酸生长的机制延伸(生长),由扩张蛋白介导,由酸性条件激活的细胞外蛋白质,其修饰果胶和纤维素之间的氢键[6]。这起到增加细胞壁延伸性的作用。 植物表皮的初生细胞壁的外部通常用角质和蜡浸渍,形成称为植物角质层的渗透性屏障。
次生细胞壁(Secondary cell walls)含有多种其他化合物,可改变其机械性能和渗透性能。 构成木材(主要是次生细胞壁)的主要聚合物包括:
此外,在大多数植物细胞壁中发现结构蛋白(1-5%); 它们被分类为富含羟脯氨酸的糖蛋白(HRGP),阿拉伯半乳聚糖蛋白(AGP),富含甘氨酸的蛋白质(GRP)和富含脯氨酸的蛋白质(PRPs)。每一类的糖蛋白是被一个特征性的高度重复的蛋白质串行来定义。 大多数是被糖基化的,含有羟脯氨酸(Hyp)并在细胞壁中交联。 这些蛋白质通常集中在特化细胞和细胞角落中。表皮的细胞壁可含有角质。 根部内皮层中的凯氏带(Casparian strip)和植物树皮的木栓细胞含有木栓质。 角质素和木栓质都是聚酯,其作用是水的运动的渗透屏障[7]。碳水化合物,次级化合物和蛋白质的相对组成在植物之间以及细胞类型和年龄之间变化。 植物细胞壁还含有许多酶,例如水解酶,酯酶,过氧化物酶和转糖基酶(transglycosylases),其作用是切割,修剪和交叉链接细胞壁聚合物。
真菌的细胞壁

有几组生物被称为“真菌”。 这些组中的一些(卵菌纲和Myxogastria)已被转移出真菌域,部分原因是细胞壁组成的基本生化差异。 大多数真正的真菌都有细胞壁,主要由几丁质和其他多糖组成[9]。 真正的真菌在细胞壁中没有纤维素[10]。
其他真核细胞壁
藻类
像植物一样,藻类有细胞壁[12]。 藻类细胞壁含有多糖(例如纤维素(一种葡聚糖))或多种糖蛋白(团藻目)或两者都有。 在藻类细胞壁中包含额外的多糖被用作藻类分类的特征。
- 甘露聚糖:它们在许多海洋绿藻的细胞壁中形成微纤维,包括来自Codium,绒枝藻属和伞藻属的那些属,以及一些红藻的细胞壁,例如紫菜属(Porphyra)和红毛菜属(Bengia)。
- 木聚糖:
- 海藻酸:它是褐藻细胞壁中常见的多糖。
- 磺化的多糖:它们存在于大多数藻类的细胞壁中; 红藻中常见的包括洋菜,卡拉胶,紫菜属,红藻胶(furcelleran),和海萝胶(funoran)。
在藻类细胞壁中可能积累的其他化合物包括孢粉素和钙离子。
原核生物的细胞壁
细菌细胞壁
细胞膜外侧是细菌细胞壁。 细菌细胞壁由肽聚糖制成,其由多糖链制成,所述多糖链由含有D-氨基酸的不寻常肽交联[16]。细菌细胞壁不同于分别由纤维素和几丁质制成的植物和真菌的细胞壁[17]。细菌的细胞壁也不同于不含肽聚糖的古菌细胞壁。尽管L型细菌可以在缺乏细胞壁的实验室中产生,但细胞壁对许多细菌的存活至关重要[18]。抗生素青霉素能够通过阻止肽聚糖的交联来杀死细菌,这会导致细胞壁变弱和溶解[17]。 溶菌酶也可以破坏细菌细胞壁。
从广义上讲,细菌中有两种不同类型的细胞壁,革兰氏阴性和革兰氏阳性。这些名称源于细胞对革兰氏染色的反应,这是一种长期用于细菌种类分类的试验[19]。
革兰氏阴性菌的细胞壁的结构和组成复杂,肽聚糖只有一薄层,在两层细胞膜之间的膜间腔中,而革兰氏阳性菌细胞壁厚得多,且只含有很多层肽聚糖。
各个生物界细胞壁的差异
参考文献
- Rutledge, Ryan D.; Wright, David W. . Lukehart, C.M.; Scott, R.A. (编). . EIC Books. Wiley. 2013 [2016-03-14]. ISBN 978-1-118-62522-4.
- . [2018-07-14]. (原始内容存档于2021-04-03).
- Campbell, Neil A.; Reece, Jane B.; Urry, Lisa A.; Cain, Michael L.; Wasserman, Steven A.; Minorsky, Peter V.; Jackson, Robert B. 8th. 2008: 118. ISBN 978-0-8053-6844-4.
- Buchanan; Gruissem, Jones. 1st. American society of plant physiology. 2000. ISBN 0-943088-39-9.
- Fry, Stephen C. . Journal of Experimental Botany. 1989, 40 (1): 1–11. doi:10.1093/jxb/40.1.1.
- Braidwood, Luke; Breuer, Christian; Sugimoto, Keiko. . New Phytologist. 2013-08-29, 201 (2): 388–402 [2018-07-14]. ISSN 0028-646X. doi:10.1111/nph.12473. (原始内容存档于2020-07-23) (英语).
- Laurence Moire; Alain Schmutz; Antony Buchala; Bin Yan; Ruth E. the; Ulrich Ryser. . Plant Physiol. 1999, 119 (3): 1137–1146 [2018-07-17]. PMC 32096
. PMID 10069853. doi:10.1104/pp.119.3.1137. (原始内容存档于2010-11-11).
- Jarvis, Michael C. . Plant Physiology. 2013-12-01, 163 (4): 1485–1486 [2018-07-19]. PMC 3850196
. PMID 24296786. doi:10.1104/pp.113.231092. (原始内容存档于2021-04-11).
- Hudler, George W. (1998). Magical Mushrooms, Mischievous Molds. Princeton, NJ: Princeton University Press, 7. ISBN 0-691-02873-7.
- Webster, John & Weber, Roland W.S. (2007) "Introduction to Fungi" New York, NY: Cambridge University Press, 6."
- Webster, John & Weber, Roland W.S. (2007) "Introduction to Fungi" New York, NY: Cambridge University Press, 5-7."
- Sendbusch, Peter V. (2003-07-31). "Cell Walls of Algae 的存盘,存档日期November 28, 2005,.". Botany Online. Retrieved on 2007-10-29.
- Sengbusch, Peter V. (2003-07-31). "Interactions between Plants and Fungi: the Evolution of their Parasitic and Symbiotic Relations 的存盘,存档日期December 8, 2006,.". biologie.uni-hamburg.de. Retrieved on 2007-10-29.
- Alexopoulos, C. J., C. W. Mims, & M. Blackwell (1996). Introductory Mycology 4. New York: John Wiley & Sons, 687-688. ISBN 0-471-52229-5.
- Raper, Kenneth B. (1984). The Dictyostelids. Princeton, NJ: Princeton University Press, 99-100. ISBN 0-691-08345-2.
- van Heijenoort J. . Glycobiology. 2001, 11 (3): 25R – 36R [2018-07-17]. PMID 11320055. doi:10.1093/glycob/11.3.25R. (原始内容存档于2009-07-01).
- Koch A. . Clin Microbiol Rev. 2003, 16 (4): 673–87 [2018-07-17]. PMC 207114
. PMID 14557293. doi:10.1128/CMR.16.4.673-687.2003. (原始内容存档于2008-09-28).
- Joseleau-Petit D, Liébart JC, Ayala JA, D'Ari R. . J. Bacteriol. September 2007, 189 (18): 6512–20 [2018-07-17]. PMC 2045188
. PMID 17586646. doi:10.1128/JB.00273-07. (原始内容存档于2019-10-18).
- Gram, HC. . Fortschr. Med. 1884, 2: 185–189.
- White, David. (1995) The Physiology and Biochemistry of Prokaryotes, pages 6, 12-21. (Oxford: Oxford University Press). ISBN 0-19-508439-X.