镱
1878年,瑞士化学家让-夏尔·加利萨·德马里尼亚从一种称为「Erbia」的稀土物质中分离出新的成份,并以矿物的发现地瑞典伊特比村将该成份命名为「Ytterbia」。他猜测Ytterbia是某新元素的化合物,因此又把该元素命名为「Ytterbium」,即镱元素。1907年,乔治·于尔班、卡尔·奥尔·冯·威尔斯巴赫和查尔斯·詹姆士分别从德马里尼亚的镱样本中提取出了又一新元素,即镥。经过不少的讨论之后,科学界决定保留原名镱,并舍弃了威尔斯巴赫所建议的「Aldebaranium」。1953年,科学家才制得纯度较高的镱金属样本。今天镱被用在不锈钢和激光活性媒质中作掺杂剂,以及用作伽马射线源。
自然形成的镱由7种稳定同位素组成,其总丰度为百万分之3。镱存在于独居石、黑稀金矿和磷钇矿中,在中国、美国、巴西和印度开采。它一般和其他稀土元素一同出现,且含量非常低。由于分离过程的困难,镱并没有太多的商业用途。镱可以作钇铝石榴石激光的掺杂剂,三氯化镱和二碘化镱也可以做各种有机合成反应的试剂。
性质
物理性质
镱金属拥有三种同素异形体,分别以希腊字母α、β和γ表示。相态的转变温度分别在−13℃和795℃,[4]但确切温度取决于环境压力及受到的应力。[5]室温下镱处于β型,具有面心立方晶体结构;高温下的γ型具有体心立方结构;[4]低温下稳定的α型则具有六方晶系结构。[6]β型的电导率与其他金属相近,但在16,000个大气压(1.6 GPa)下会呈现半导体性质。其电阻率在加压至39,000个大气压(3.9 GPa)时会增加十倍,但到40,000大气压(4.0 GPa)时却会将至室温电阻率的10%左右。[4][7]
和低温下呈反铁磁性和/或铁磁性的其他稀土金属不同,镱在1.0 K以上具有顺磁性。[8]α型则有抗磁性。[5]镱的熔点在824 °C,沸点在1196 °C,是所有金属中液态温度区间最小的。[4]
其他的镧系元素拥有六方密堆积晶体结构,但镱却有面心立方结构,使得它的密度(6.973 g/cm3)远低于邻近的铥(9.32 g/cm3)和镥(9.841 g/cm3)。镱的熔点和沸点同样远低于它们。这是因为其电子排布含有一个闭壳层([氙] 4f14 6s2),所以只有两颗6s电子可以参与金属键,而其它的镧系元素则有三颗这样的电子。[6]
化学性质
镱金属在空气中会缓慢失去光泽。镱细粉在空气和氧气中会迅速氧化。如果细粉和聚四氟乙烯或六氯乙烷混合,会燃烧并产生翠绿色火焰。[9]镱会和氢反应,形成各种非整比氢化物。镱在水中会缓慢溶解,在酸中迅速溶解,并产生氢气。[6]
镱的电正性很高,会和冷水缓慢反应、和热水快速反应,形成氢氧化镱:[10]
- 2 Yb (s) + 6 H2O (l) → 2 Yb(OH)3 (aq) + 3 H2 (g)
- 2 Yb (s) + 3 F2 (g) → 2 YbF3 (s)(白色)
- 2 Yb (s) + 3 Cl2 (g) → 2 YbCl3 (s)(白色)
- 2 Yb (s) + 3 Br2 (g) → 2 YbBr3 (s)(白色)
- 2 Yb (s) + 3 I2 (g) → 2 YbI3 (s)(白色)
镱(III)离子能吸收近红外线波长范围的光线,但不吸收可见光,所以氧化镱矿物(Yb2O3)呈白色,镱盐也是无色的。在稀硫酸中,镱迅速溶解形成含有无色Yb(III)离子的溶液。这些离子与九个水分子键合成配合物:[10]
- 2 Yb (s) + 3 H2SO4 (aq) → 2 [Yb(H2O)9]3+ (aq) + 3 SO2−
4 (aq) + 3 H2 (g)
二价和三价镱
镱一般呈三价氧化态,但它亦可以形成二价化合物。这种特性在几乎只形成三价化合物的镧系元素中较为罕见。二价态的价电子排布为4f14,因为填满的f壳层能提高稳定性。黄绿色的镱(II)离子是一种强还原剂,会在水中分解后释放氢气,所以只有无色的镱(III)离子才能出现在水溶液中。钐和铥的+2态有这样的化学行为,但铕(II)离子在水中是稳定的。镱金属的化学性质与铕金属和碱土金属相似,它会在氨中溶解,形成蓝色的电子盐。[6]
同位素
自然界中的镱由7种稳定同位素组成:168Yb、170Yb至174Yb及176Yb,其中比例最高的为174Yb,其丰度为31.8%。已被观测的放射性同位素共有27种,其中最稳定的有169Yb(半衰期为32.0天)、175Yb(4.18天)和166Yb(56.7小时)。剩余放射性同位素的半衰期都在2小时以内,大部份甚至短于20分钟。镱共有12种亚稳态(同核异构体),最稳定的是169mYb(半衰期为46秒)。[11][12]
镱同位素的原子量在147.9674 u(原子质量单位)和180.9562 u之间。比174Yb轻的同位素主要以电子捕获的方式进行衰变,形成各种铥同位素;而更重的则主要进行β衰变,并形成镥的同位素。[11][12]
存量

镱和其他稀土元素一同出现在一些稀有矿物之中。常见的商业矿源是含有0.03%镱元素的独居石。其他含有镱的矿物还包括黑稀金矿和磷钇矿等。主要的开采地点有中国、美国、巴西、印度、斯里兰卡和澳洲,总矿藏估计有一百万吨。由于商业用途不多,所以其全球年产量只有50吨。镱须从其他稀土元素中分离开来。这一过程非常困难,但20世纪中到晚期所发展的离子交换法和溶剂萃取法已将提取过程大大简化。拥有偶数原子序的镱在地壳中的含量约为3 mg/kg,比其相邻的元素(铥和镥)高很多,这符合奥多-哈尔金斯规则。[7][13]
生产
镱的性质和其他镧系元素非常相近,所以分离过程较为困难。首先,独居石、磷钇矿等矿物须在各种酸中溶解,比如用硫酸。离子交换技术可以把镱选择性地分离出来。所得溶液再加入树脂,然后在螯合剂中溶解,这时各种镧系元素键合方式的不同使相应的化合物各自分离开来。[14][15] 除了离子交换法,镱金属的制备还可以经钠汞齐还原而得。这种方法先在酸性稀土元素缓冲液中加入熔融钠汞合金,这会还原并溶解Yb3+。合金经氢氯酸处理,镱金属再以草酸盐的形态萃取出来,然后加热转化为氧化物。在高真空中把氧化镱与镧、铝、铈或锆一齐加热,可以将其还原为镱金属。要进一步纯化这一金属,须将其升华,并在冷凝板上采集。[16]
化合物
_oxide.jpg.webp)
镱的化学性质和其他镧系元素相似。大部份镱化合物都处于+3氧化态,而具有+3态的镱盐一般都几乎无色。与铕、钐和铥一样,氢和锌粉末可以还原镱的三卤化物。[6]二价镱只出现在固态化合物中,其反应特性和碱土金属化合物类似。例如,一氧化镱的分子结构和氧化钙相同。[6]
历史

瑞士化学家让-夏尔·加利萨·德马里尼亚(Jean Charles Galissard de Marignac)于1878年发现了镱元素。他在检验硅铍钇矿时,在称为「Erbia」的氧化铒矿物中发现了新的成份。他以矿物来源地瑞典的伊特比村(Ytterby)将该物质命名为「Ytterbia」。他怀疑Ytterbia是某种新元素的化合物,并把这种元素称为「Ytterbium」,汉译为镱。[7][20]
1907年,法国化学家乔治·于尔班(Georges Urbain)发现德马里尼亚的Ytterbia物质实际上由两种不同的成份组成:Neoytterbia和Lutecia。Neoytterbia(意为「新Ytterbia」)也就是今天的镱元素,而Lutecia就成了镥元素(Lutetium)。奥地利化学家卡尔·奥尔·冯·威尔斯巴赫(Carl Auer von Welsbach)在同个时期也分离出这两种物质,但他却将它们命名为「Aldebaranium」和「Cassiopeium」;[7]美国化学家查尔斯·詹姆士(Charles James)也同时独立分离出这些新元素。[22]于尔班和威尔斯巴赫互相指责对方在看过自己的研究结果后才发表论文。[23][24][25]当时审理新元素命名的是由弗兰克·威格尔斯沃斯·克拉克(Frank Wigglesworth Clarke)、威廉·奥斯特瓦尔德和乔治·于尔班所组成的国际原子量委员会。委员会以于尔班最早从德马里尼亚的样本中分离出镥元素作为原因,在1909年决定采用于尔班的命名方案,从而解决了争议。[23]之后,Neoytterbium一名又改回现名Ytterbium。
1953年,科学家利用发展较成熟的离子交换过程,终于制得纯镱金属,并首次对镱的化学和物理性质进行准确的测量。[7]在1953至1998年间,镱价格稳定维持在每公斤1,000美元左右。[26]
应用
伽马射线源
在核反应炉中对镱进行照射所促发的中子活化会产生半衰期为32天的169Yb和半衰期为4.2天的175Yb同位素。169Yb被用作可携带X光机的辐射源。和X光一样,伽马射线可以穿透软组织,但会被骨骼等密度较高物质所阻挡。所以少量的169Yb样本发射伽马射线,和小型X光机有相同的功用,能对细小的物体做放射性成像。实验显示,用169Yb辐射源拍出的照片约等于250至350 keV能量X光之成像。169Yb能应用在核医学中。[27]
稳定原子钟
利用频率较高的可见光所制成的原子钟可以比利用微波的铯原子钟更加准确。德国联邦物理科技机构(PTB)正在研发这种原子钟。其中一种极为精确的模型使用离子阱束缚单个镱离子,其精确至小数点后17位数。[28]美国国家标准技术研究所所研发的原子钟用到1万个冷却至10微开尔文的稀土原子。这些原子被束缚在一个由激光组成的扁平圆形井状光学晶格当中。另一条激光束每秒「摆动」518兆(万亿)次,并激发原子在两个能级间转换。原子数量越大,钟的精度就越高。该原子钟的摆动偏差小于2×1018,约比先前记录更精确十倍。就算镱原子钟运行时长为宇宙年龄,其误差仍小于一秒。[29][30]
掺镱激光活性媒质
三价镱离子可以做激光活性媒质的掺杂剂,特别用于固态激光器和双包层光纤激光器中。镱激光器效率高,寿命长,且能够产生很短的脉冲。把镱混入制造激光器所用的材料是一道较简单的工序。[31]镱激光器的辐射频带一般在1.06至1.12 µm,并在900 nm至1 µm波长抽运,具体数值取决于基质材料和实际用途。镱的量子亏损很小,所以可做高效率激光器的掺杂剂,并放大激光功率。[32]
掺镱物质的激发能态不复杂,可以使用有效截面概念来描述。对于大部份掺镱激光媒质,McCumber关系成立,[33][34][35]但这一关系能如何应用在掺镱复合材料上,仍是个讨论中的议题。[36][37]
通常镱的使用浓度较低。在高浓度情况下,掺镱物质会呈现光暗化现象(玻璃纤维),[38]甚至转为发出宽带带光(晶体及陶瓷),[39]从而降低了激光功率。这种现象可能和过热以及高浓度镱离子的电荷补偿情况有关。[40]
安全
虽然镱的化学性质较为稳定,但它一般仍须存放在惰性环境下的密封容器中,例如氮气干燥箱,以保护金属不受空气和湿气的侵蚀。[43]所有镱化合物一般认为都是剧毒,但一些初步研究却指出其危险性实际上很低。这些化合物可以对人的眼部和皮肤造成刺激,并有可能造成畸胎。[44]镱金属粉末可以在空气中自燃,[45]所产生的烟气也具有毒性。镱所产生的火不能用水浇熄,而只能使用D级灭火器。[46]
参考数据
- Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. . Pure and Applied Chemistry. 2022-05-04. ISSN 1365-3075. doi:10.1515/pac-2019-0603 (英语).
- 除了铈和钷以外,钇和所有的镧系元素在双(1,3,5-三叔丁基苯)配合物中都显示出了0氧化态,见Cloke, F. Geoffrey N. . Chem. Soc. Rev. 1993, 22: 17–24. doi:10.1039/CS9932200017.和Arnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke. . Journal of Organometallic Chemistry. 2003-12-15, 688 (1–2): 49–55. doi:10.1016/j.jorganchem.2003.08.028.
- La(I)、Pr(I)、Tb(I)、Tm(I)、Yb(I)都存在于对应的MB8−簇合物中,见Li, Wan-Lu; Chen, Teng-Teng; Chen, Wei-Jia; Li, Jun; Wang, Lai-Sheng. . Nature Communications. 2021, 12: 6467 [2023-03-23]. doi:10.1038/s41467-021-26785-9. (原始内容存档于2022-09-26).
- Hammond, C. R. . CRC press. 2000. ISBN 0-8493-0481-4.
- Bucher, E.; Schmidt, P. H.; Jayaraman, A.; Andres, K.; Maita, J. P.; Nassau, K.; Dernier, P. D. . Physical Review B (American Physical Society (APS)). 1970-11-15, 2 (10): 3911–3917. ISSN 0556-2805. doi:10.1103/physrevb.2.3911.
- Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils;. . 91–100. Walter de Gruyter. 1985: 1265–1279. ISBN 3-11-007511-3 (德语).
- Emsley, John. . Oxford University Press. 2003: 492–494. ISBN 0-19-850340-7.
- Jackson, M. (2000). "Magnetism of Rare Earth" (页面存档备份,存于). The IRM quarterly 10(3): 1
- Koch, Ernst-Christian; Weiser, Volker; Roth, Evelin; Knapp, Sebastian; Kelzenberg, Stefan. . Propellants, Explosives, Pyrotechnics (Wiley-Blackwell). 2012, 37 (1): 9–11. ISSN 0721-3115. doi:10.1002/prep.201100141.
- . Webelements. [2009-06-06]. (原始内容存档于2021-04-27).
- . Nucleonica: Universal Nuclide Chart. Nucleonica. 2007–2011 [July 22, 2011]. (原始内容存档于2017-02-19).
- Georges, Audi; Bersillon, O.; Blachot, J.; Wapstra, A.H. . Nuclear Physics A (Atomic Mass Data Center). 2003, 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
- Lacovara, P.; Choi, H. K.; Wang, C. A.; Aggarwal, R. L.; Fan, T. Y. . Optics Letters (The Optical Society). 1991-07-15, 16 (14): 1089. ISSN 0146-9592. doi:10.1364/ol.16.001089.
- Gelis, V. M.; Chuveleva, E. A.; Firsova, L. A.; Kozlitin, E. A.; Barabanov, I. R. . Russian Journal of Applied Chemistry (Springer Nature). 2005, 78 (9): 1420–1426. ISSN 1070-4272. doi:10.1007/s11167-005-0530-6.
- Hubicka, Halina; Drobek, Dorota. . Hydrometallurgy (Elsevier BV). 1997, 47 (1): 127–136. ISSN 0304-386X. doi:10.1016/s0304-386x(97)00040-6.
- Patnaik, Pradyot. . McGraw-Hill. 2003: 973–975 [2009-06-06]. ISBN 0-07-049439-8.
- Lou, Sha; Westbrook, John A.; Schaus, Scott E. . Journal of the American Chemical Society (American Chemical Society (ACS)). 2004, 126 (37): 11440–11441. ISSN 0002-7863. doi:10.1021/ja045981k.
- Fang, Xinggao; Watkin, John G.; Warner, Benjamin P. . Tetrahedron Letters (Elsevier BV). 2000, 41 (4): 447–449. ISSN 0040-4039. doi:10.1016/s0040-4039(99)02090-0.
- Girard, P.; Namy, J. L.; Kagan, H. B. . Journal of the American Chemical Society (American Chemical Society (ACS)). 1980, 102 (8): 2693–2698. ISSN 0002-7863. doi:10.1021/ja00528a029.
- Enghag, Per (2004). Encyclopedia of the elements: technical data, history, processing, applications. John Wiley & Sons, ISBN 978-3-527-30666-4, p. 448.
- Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 978-0-19-855370-0
- . National Historic Chemical Landmarks. American Chemical Society. [2014-02-21]. (原始内容存档于2021-03-03).
- Urbain, M. G. . Comptes rendus. 1908, 145: 759–762 [2014-06-12]. (原始内容存档于2021-03-31).
- Urbain, G. . Monatshefte für Chemie. 1909, 31 (10): 1. doi:10.1007/BF01530262.
- von Welsbach, Carl A. . Monatshefte für Chemie. 1908, 29 (2): 181–225. doi:10.1007/BF01558944.
- Hedrick, James B. (PDF). USGS. [2009-06-06]. (原始内容存档 (PDF)于2011-01-10).
- Halmshaw, R. . Springer. 1995: 168–169. ISBN 0-412-62780-9.
- Peik, Ekkehard (2012-03-01). New "pendulum" for the ytterbium clock (页面存档备份,存于). ptb.de.
- . Phys.org. [2014-06-12]. (原始内容存档于2020-11-12).
- NIST Ytterbium Atomic Clocks Set Record for Stability http://www.nist.gov/pml/div688/clock-082213.cfm (页面存档备份,存于). Retrieved 2013-08-23.
- Ostby, Eric. (PDF). California Institute of Technology. 2009 [21 December 2012]. (原始内容 (PDF)存档于2020-11-27).
- Grukh, Dmitrii A; Bogatyrev, V A; Sysolyatin, A A; Paramonov, Vladimir M; Kurkov, Andrei S; Dianov, Evgenii M. . Quantum Electronics. 2004, 34 (3): 247. Bibcode:2004QuEle..34..247G. doi:10.1070/QE2004v034n03ABEH002621.
- Kouznetsov, D.; Bisson, J.-F.; Takaichi, K.; Ueda, K. . JOSAB. 2005, 22 (8): 1605–1619. Bibcode:2005JOSAB..22.1605K. doi:10.1364/JOSAB.22.001605.
- McCumber, D. E. . Physical Review B. 1964, 136 (4A): 954–957. Bibcode:1964PhRv..136..954M. doi:10.1103/PhysRev.136.A954.
- Becker, P. C.; Olson, N. A.; Simpson, J. R. . Academic press. 1999.
- Kouznetsov, D. . Applied Physics Letters. 2007, 90 (6): 066101. Bibcode:2007ApPhL..90f6101K. doi:10.1063/1.2435309.
- Zhao, Guangjun; Su, Liangbi; Xu, Jun; Zeng, Heping. . Applied Physics Letters. 2007, 90 (6): 066103. Bibcode:2007ApPhL..90f6103Z. doi:10.1063/1.2435314.
- Koponen, Joona J.; Söderlund, Mikko J.; Hoffman, Hanna J. and Tammela, Simo K. T. . Optics Express. 2006, 14 (24): 11539–11544. Bibcode:2006OExpr..1411539K. PMID 19529573. doi:10.1364/OE.14.011539.
- Bisson, J.-F.; Kouznetsov, D.; Ueda, K.; Fredrich-Thornton, S. T.; Petermann, K.; Huber, G. . Applied Physics Letters. 2007, 90 (20): 201901. Bibcode:2007ApPhL..90t1901B. doi:10.1063/1.2739318.
- Sochinskii, N. V.; Abellan, M.; Rodriguez-Fernandez, J.; Saucedo, E.; Ruiz, C. M.; Bermudez, V. . Applied Physics Letters. 2007, 91 (20): 202112. Bibcode:2007ApPhL..91t2112S. doi:10.1063/1.2815644.
- Gupta, C. K. and Krishnamurthy, Nagaiyar. . CRC Press. 2004: 32. ISBN 0-415-33340-7.
- Koch, Ernst-Christian; Hahma, Arno. . Zeitschrift für anorganische und allgemeine Chemie (Wiley-Blackwell). 2012-03-08, 638 (5): 721–724. ISSN 0044-2313. doi:10.1002/zaac.201200036..
- Ganesan, Mani; Bérubé,, Christian D.; Gambarotta, Sandro; Yap, Glenn P. A. . Organometallics (American Chemical Society (ACS)). 2002, 21 (8): 1707–1713. ISSN 0276-7333. doi:10.1021/om0109915.
- Gale, T.F. . Teratology. 1975, 11 (3): 289–95. PMID 807987. doi:10.1002/tera.1420110308.
- Ivanov, V. G.; Ivanov, G. V. . Combustion, Explosion, and Shock Waves (Springer Nature). 1985, 21 (6): 656–659. ISSN 0010-5082. doi:10.1007/bf01463665.
- . [2009-06-06]. (原始内容存档于2018-03-02).
延伸阅读
![]() |
维基共享资源中相关的多媒体资源:镱 |
- Guide to the Elements – Revised Edition, Albert Stwertka, (Oxford University Press; 1998) ISBN 978-0-19-508083-4
外部链接
![]() |
维基词典中的词条「」。 |
- 元素镱在洛斯阿拉莫斯国家实验室的介绍(英文)
- —— 镱(英文)
- 元素镱在The Periodic Table of Videos(诺丁汉大学)的介绍(英文)
- 元素镱在Peter van der Krogt elements site的介绍(英文)
- WebElements.com – 镱(英文)
- It's Elemental – Ytterbium (页面存档备份,存于)