环 (代数)
环()是由任意集合 R 和定义于其上的两种二元运算(记作「」和「」,常被简称为加法和乘法,但与一般所说的实数加法和乘法不同)所构成的,符合一些性质(具体见下)的代数结构。
环论 |
---|
![]() |
环的定义类似于交换群,只不过在原来「+」的基础上又增添另一种运算「⋅」(注意我们这里所说的「+」与「⋅」一般不是我们所熟知的四则运算加法和乘法)。在抽象代数中,研究环的分支为环论。
定义
为集合, 和 为定义于其上的二元运算(一种二变量函数)。以下依照二元运算的惯例,将运算结果 和 分别简记为 和 。
被称为环,若它满足:
- 为交换群 ,即:
- 结合律:对所有的 有
- 单比特:存在 ,对所有的 有 (可由上面的性质证明这样的 是唯一的, 这样的 称为加法单比特)
- 反元素:对所有的 存在 使 (可以由上面的性质证明这样的 是唯一的,通常简记为 并称为 的加法反元素)
- 交换律:对所有的 有
- 为半群,即:
- 结合律:对所有的 有
- 乘法对于加法满足分配律,即对所有的 有:
其中 常会被暱称为加法;类似的 会被暱称为乘法,因为取 (实数系), 为普通的实数加法且 为普通的实数乘法的话,显然为环。而此时加法单比特显然为实数 ,所以有时会偷懒的将一般环的加法单比特 简写为 。
所以惯例上仿造实数乘法把 简写为 ;而且因为实数乘法优先于实数加法,所以也会规定 是 的简写。此外还会仿造实数减法,会把 简写为 。
定义的分歧
在1960年代以前,多数抽象代数的书籍并不将乘法单比特列入环的定义;有些不要求乘法单比特的作者,会将包含乘法单比特的环称为「单位环」;反之,有些要求乘法单比特的作者,会将不含乘法单比特的环称为「伪环」。
基本性质
为环,则对所有 有:
I.
证明:
- (单比特)
- (式1等号两边于左侧同乘 )
- (分配律)
- (式2, 式3)
- (式4等号两边于右侧加 )
- (以反元素化简式5)
可调换 和 的顺序, 仿上证明 。
II.
证明:
- (加法交换律、分配律、加法逆元素)
- (上面的性质I)
故 的确是 的加法反元素,仿上可证明 也是 的加法反元素。
环的相关概念
例子
- 集环:非空集的集合构成一个环,当且仅当它满足以下几个条件中任何一个:
- 对集合的并和差运算封闭,即:∀E,F∈R ⇒ E∪F∈R,E-F∈R;
- 对集合的交和对称差运算封闭,即:∀E,F∈R ⇒ E∩F∈R,E△F∈R;
- 对集合的交,差以及无交并运算封闭。
- 这样得到的集环以交为乘法,对称差为加法;以空集为零元,并且由于∀E∈R,E∩E=E·E=E,因此它还是布尔环。
环的理想
考虑环,依环的定义知是阿贝尔群。集合,考虑以下条件:
- 构成的子群。
- ,有。
- ,有。
若满足条件1、2则称是的右理想;若满足条件1、3则称是的左理想;若满足条件1、2、3,即既是的右理想,也是的左理想,则称为的双边理想,简称理想。
示例
- 整数环的理想:整数环只有形如的理想。
基本性质
- 在环中,(左/右/双边)理想的和与交仍然是(左/右/双边)理想。
- 在除环中,(左/右)理想只有平凡(左/右)理想。
- 对于环R的两个理想、,记。则由定义易知:
- 若是的左理想,则是的左理想;
- 若是的右理想,则是的右理想;
- 若是的左理想,是的右理想,则是的双边理想。
相关概念
- 真(左/右/双边)理想
- 若的(左/右/双边)理想I满足:是的真子集,称为的真(左/右/双边)理想。
- 极大(左/右/双边)理想
- 环及其真(左/右/双边)理想,称为的极大(左/右/双边)理想,若不存在的真(左/右/双边)理想,使得是的真子集。
- 若是极大(左/右)理想,又是双边理想,则是极大理想。
- 极大双边理想不一定是极大(左/右)理想。
- 生成理想
- 环,,定义,则易知:
- 是环的理想,并且是中所有包含子集的理想的交,即是中包含子集的最小理想。
- 若为由子集生成的理想,称为的生成元集。当是有限集时,称为的有限生成理想。
- 下面是生成理想的几种特殊情况:
- 当是交换环时,
- 当是幺环时,
- 当是交换幺环时,
- 同一个理想,其生成元集可能不唯一。
- 下面是生成理想的几种特殊情况:
- 主理想
- 由环中单个元素生成的理想称为的主理想。即,设,则称为的主理想。
- 素理想
- 真理想被称为的素理想,若理想,则或。
- 素环
- 若环的零理想是素理想,则称是素环或质环。无零因子环是素环。在交换环中,真理想是素理想的充分且必要条件是:是素环.
- 半素理想
- 环的真理想,若理想,,则称是环的半素理想。
- 半素理想是一类比素理想相对较弱条件的理想,因为素理想是半素理想,但半素理想未必是素理想。
有关环的其它概念
- 零因子 (zero divisor):
- 设是环中的非零元素,如果,称为左零因子;类似地可以定义右零因子。左零因子和右零因子通称零因子。
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.