二元运算

二元运算是种数学运算,它的运算结果跟两个输入值必须是同种东西。比如说,整数的加法是二元运算,因整数相加以后仍然是整数。

定义

二元运算的定义  给定集合 ,二元函数 称为集合 上的二元运算

如果从集合 对自己的笛卡儿积 (也就是 )取出的任意 ,都对应 里的某个值 ,那对应规则 的本身就被称为二元运算。

通常写为 ,而且比起使用字母,二元运算时常以某种运算符表示,来跟普通的函数作区别。

事实上 这个记号本身就保证了:「只要 就会有 」,这个性质也称为(二元)运算封闭性

常用性质和术语

关于二元运算有很多常见的性质和术语,列举如下:

幺元

: 是集合 上的二元运算,,则:

  • 下的左幺元,若 满足:
  • 下的右幺元,若 满足:
  • 下的幺元,若 满足: 既是 在二元运算 下的左幺元,又是 在二元运算 下的右幺元。

逆元

: 是集合上的二元运算,,下的幺元。则:

  • 下的左逆元,若满足:
  • 下的右逆元,若满足:
  • 下的逆元,若满足:a既是下的左逆元,又是下的右逆元。(显然此时也是的逆元),若上下文明确是哪个运算,则元素的逆元通常记为

零元

: 是集合上的二元运算,,则:

  • 下的左零元,若满足:
  • 下的右零元,若满足:
  • 下的零元,若满足:z既是下的左零元,又是下的右零元。

零因子

: 是集合上的二元运算,,下的零元。则:

  • 中在下的左零因子,若满足:,使
  • 中在下的右零因子,若满足:,使
  • 下的零因子,若满足:a既是下的左零因子,又是下的右零因子。

交换律

: 是集合上的二元运算,则: 称满足交换律,若满足:

结合律

: 是集合上的二元运算,则: 称满足结合律,若满足:

消去律

: 是集合上的二元运算,则:

满足左消去律,若满足:

满足右消去律,若满足:

满足消去律,若同时满足左消去律与右消去律。

幂等律

: 是集合上的二元运算,则: 称满足幂等律,若满足:

幂幺律

: 是集合上的二元运算,i是下的幺元, 则:称满足幂幺律,若满足:(显然此时每个元素都是它自己的逆元);

幂零律

: 是集合上的二元运算,z是下的零元, 则:称满足幂零律,若满足:,有(显然此时每个元素都是零元素,而且既是左零元素又是右零元素);

分配律

: : 是集合上的两个二元运算,则:

  • 满足左分配律,若 满足:,有
  • 满足右分配律,若 满足:,有
  • 满足分配律,若 满足左分配律以及右分配律;


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.