子環
判定
設(R,+,·)為环,S是R的一個非空子集。(S,+,·)是(R,+,·)的子環,當且僅當:[1]
- R的零元素也在S裡
- ∀a,b∈S, a+b∈S
- ∀a∈S, -a∈S
- ∀a,b∈S, ab∈S
或等價地:
- ∀a,b∈S, a-b∈S
- ∀a,b∈S, ab∈S
也就是說:
- S和+構成一個群
- ∀a,b∈S, ab∈S
如果要求環還包含乘法單位元,那麼就要在上述條件加上1∈S這一條。
參考資料
- Frederick Michael Hall. . CUP Archive. 1966: 77 [2014-12-28]. (原始内容存档于2019-05-02).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.