水污染

水质污染是指对水体湖泊河流海洋含水层地下水等)的污染。若污染物没有经过处理去除有害物质,就直接或是间接的排放到水中,就会引起水质污染,造成环境退化

水质污染会影响整个生态系,包括水体内的所有动植物。这类的影响不只是针对个别物种或是特别地区的一些生物,也会对整个自然界造成影响。

简介

加拿大拉辛运河污染

水之所以受到污染,主要是受到人类污染物伤害。水污染是世界性主要问题之一,需要在各个层面(从国际到个人)推进水资源政策评估和修正。据信,水污染正成为世界死亡和疾病的主要黑手,[1][2]全球每天大约有14,000人直接或间接因此而丧生。[2]据估算,在印度每天约有580人死于水污染有关的疾病。[3]中国水资源中约有九成被污染。[4]2007年,有5000万中国人没干净水喝。[5]中国当局在2007年称国内7条主要江河中四分之一严重污染,毒性之大以至于能伤害皮肤。[6]中国生态环境部2021年1月15日向媒体通报了2020年1-12月全国地表水质量状况,显示地级及以上城市中,铜川沧州邢台东营滨州阜新日照商丘淮北临汾沈阳吕梁潍坊廊坊辽源通辽天津鹤壁盘锦聊城连云港菏泽徐州宿州青岛开封淄博四平周口玉溪30个城市国家地表水考核断面水环境质量相对较差(从倒数第1名至倒数第30名)。[7]发展中国家面临着严峻的水污染问题,发达国家也头疼不已。例如,美国最新水质报告称,受调查的溪流中的44%,湖泊中的64%,海湾与江口的30%受到污染。[8]

分类

地表水和地下水虽然彼此联系,但常常分开研究和管理。[9]地表水流过土壤成为地下水,反之,地下水可以补给地表水。根据来源可以将地表水污染源分为两类。

点源污染

巴西里约热内卢造船厂的点源污染

点源水污染指进入水体的污染物来自单个确定来源,如水管或沟渠。这类例子有污水处理排放、工厂排放或城市下水道。美国的《净水法》要求点源排污得到监管。[10]《净水法》对点源污染的定义于1987年修正,涵盖城市污水处理系统及工业下水道,如工地等。[11]

非点源污染

非点源污染指污染物不是从单个源头扩散而来。非点源污染常常是大范围区域少量污染物累积而成。常见的例子是耕地肥料流失的[12]富营养的径流在雨后冲刷农田或林地,成为非点源污染例子。

受污染的雨水冲刷停车场、道路,成为城市径流,有时也被列在非点源污染行列中。然而,由于该径流通常由下水系统经管道排放至当地地表水域,再次成为点源污染。

地下水污染

地下水和地表水之间的互动关系很复杂。由此,地下水污染并不能简单地归为地表水污染。[9]就其本质来说,地下水含水层易受的污染并不一定直接污染地表水体,而点源与否可能相对次要。漏在土地上的化学物质或放射性同位素虽然远离水体,并未造成点源或非点源污染,但却可以污染之下的含水层,造成有毒烟羽。烟羽的运动叫做羽状峰,可以通过水文学迁移模式或地下水模型来分析。对地下水污染的分析可以关注土地特征、场地地质、水文地质或污染物本质等。

污染物

臭水沟

水中的污染物通常可分为三大类,即生物性、物理性和化学性污染物。生物性污染物包括细菌、病毒和寄生虫。到目前为止,有关致病细菌和寄生虫的研究较多,且已有较好的灭活方法。但对致病病毒的研究尚不够充分,也没有公认的病毒灭活要求标准。物理性污染物包括悬浮物、热污染和放射性污染。其中放射性污染危害最大,但一般存在于局部地区。化学性污染物包括有机和无机化合物。随着痕量分析技术的发展,至今从源水中检出的化学性污染物已达2500种以上。

水质污染物有多种来源,主要分为自然产生的和人为产生的两种。

  • 自然产生的污染,如森林落叶落花,暴雨冲刷造成的污泥流入,火山喷发的熔岩和火山灰,矿泉带来的可溶性矿物质,温泉造成的温度变化等,如果是短期的,会造成水生生物死亡,但过后水体会逐渐恢复原来的状态,如火山喷发;如果是长期的,生态系统会变化而适应这种状态,如黄河长期被泥土污染,水变得黄色,不耐污的鱼类会消失,而耐污的鱼类如鲤鱼会逐渐适应这种环境,生长出黄河金色大鲤鱼。
  • 人为产生的污染要复杂的多,其中工业由于采矿和生产制造,排出含有毒的重金属或难分解的化学物质,农业使用的农药和化肥,这些物质流入水体都会迅速杀死所有水生生物,并且使水体无法恢复正常状态。如果浓度低,也会逐渐在生物体内积累,造成无法弥补的损失。如日本发生的水俣病事件,就是工业排出的低浓度,在水中微生物作用下转化成可溶性甲基汞,逐渐在水虫体内积累,鱼吃水虫后甲基汞在鱼体内逐渐积累,人吃鱼后在人体内积累,积累到一定浓度,人就开始发病,而且无法治愈。DDT农药也是先在鱼体内积累,水鸟吃了鱼后也在体内积累,即使还不到发病浓度,但鸟产下的蛋变成软壳,无法孵化。据说美国国鸟白头海雕濒临灭绝的原因就在于此[13]

除了工农业污染物外,随着人口增加,人类生活污水也增加了排放量,如洗澡、厨房、厕所等,这类水虽然不含有毒物质,但含有大量含植物营养物质,促使水中藻类迅速超常地繁殖并吸收溶解氧,同时大分子的有机物被微生物分解也消耗水中的溶解氧,因此造成水体成为缺氧状态,藻类死亡还产生有毒物质,致使水中鱼类大量死亡。在海水中一般迅速繁殖的藻类是红色的,因此叫“赤潮”,在淡水中的藻类可能有各种颜色,所以叫“水华”。水体出现赤潮和水华都表明是污染状态。

目前地球表面虽然有70%是被水覆盖,但人类可利用的淡水资源不足1%,淡水资源又是经常被人类活动污染的对象,被污染的水体要想恢复是非常困难的,因此进行水污染控制是非常必要和迫切的,需要全球合作进行。

病原体

南亚水污染教育海报
从坑厕掏出的大粪被倒入科罗戈乔附近的河里,肯尼亚内罗毕

导致疾病的微生物被称之为病原体。虽然大多数细菌既不致病也没用处,但一些细菌会导致疾病。大肠型细菌虽然不会导致疾病,但常被用作水污染细菌指标。其它在地表水出现的微生物有时也会致病,如:

高浓度病原体可能来自就地卫生系统(化粪池旱厕)或排放未经足够处理的污水。[16]这也可能是污水处理厂二级处理不佳所致(多发生在欠发达国家)。在发达国家,老城破旧的污水系统泄露(管道、泵、阀门)会导致卫生下水系统满溢。有的城市有合流下水系统,会因雨水冲刷而排放未经处理的污水。[17] 淤泥(污水排放带来的沉积物)也会污染水体。

浑浊的河流充满沉淀物

病原体也可能是家畜管理不佳所致。

有机、无机和可见污染物

新西兰奥克兰城河中搜集垃圾的吊杆

污染物可以包括有机无机化合物。 水中有机污染物包括:

水中无机污染物包括:

大型污染物,即水面可见物品,或海洋废弃物,包括:

  • 垃圾,人们仍在地上的(如纸、塑料、厨余)及意外遗弃的废弃物被雨水冲刷最后进入地表水。
  • 塑料
  • 沉船

热污染

麻省发电厂向芒特霍普湾排放热水

热污染是因人类影响导致水体温度升降的问题。不同于化学污染,热污染改变了水体的物理性质。常见的热污染是发电厂或工厂用水做冷却剂。水温上升降低了含氧量,杀死了鱼类,改变了食物链组成,削减了生物多样性,为嗜热生物入侵提供了环境。[20][21][22]城市径流也会提升地表水温度。

热污染也可以指水库底层向温暖的河流排放冷水造成的问题。

水污染物流动和化学反应

安格尔西岛废弃铜矿旁被污染的河流

大多数水污染物最终经河流汇入大海。通过水文运送模型的研究发现在一些地方污染影响到离出海口一百英里开外的地方。先进的计算机模拟如雨洪管理模式或动态溪流模拟评估模式在世界许多地方得到应用,用以评估水体污染。作为指标,滤食动物,如桡脚类生物被用于研究纽约海湾污染。毒素最高的地方并非哈德逊河口,而是向南100 km(62 mi)开外,因为掺入浮游生物组织需要几天时间。哈德逊河排污因科里奥利力沿海岸向南流出。更南地区缺氧是由于化学物质吸收氧气及水体富营养化导致的水华所致。小鱼吃掉桡脚类后再被大鱼吃掉,导致毒素沿食物链攀升,造成鱼类和贝类死亡。在食物链上每进一步都导致污染物浓度累加,如重金属(如)和持久性有机污染物(如滴滴涕),即生物放大型或生物累积。

大型海洋环流(涡旋)会把漂浮的海洋废弃物卷进来。例如,北太平洋环流积存了所谓的“太平洋垃圾带”,现估计比德克萨斯州大100倍。塑料垃圾会从海洋污染中吸收有毒化学物质,伤害吞食它的生物。[23] 许多垃圾被海鸟和海鱼吃到肚子里,这阻塞消化系统,导致厌食或饿死。

许多化学物质会衰退或发生化学变化,特别是在地下水中长期留存中会这样。值得注意的化学物质是有机氯化合物,如三氯乙烯(用于工业金属清洗和电子设备生产)和干洗工业的四氯乙烯。它们本身都是致癌物质,在部分分解后生成新的有害化学物质(包括二氯乙烯氯乙烯)。

由于地下水经看不见的含水层远距离流动,使得地下水污染比地表水污染更难以治理。无孔含水层如黏土会通过简单吸附过滤、稀释、及某些化学反应和生物活动部分净化水中细菌。然而,污染物有时会简单地转变为土地污染。地下水流经开口裂痕和洞穴而未经过滤,可视为地表水。事实上,由于人类在喀斯特地形的自然沉洞填放垃圾会使问题恶化。

许多次生问题并非来自最初污染物,而是其衍生副作用。例如,地表径流中的淤泥会阻碍阳光,妨碍水中植物进行光合作用

度量

环境科学家准备水体自动取样机

分析水污染可以从几大方面进行:物理的、化学的和生物的。大多数需要搜集样本,进行专业分析测试。一些方式可以无需样本现场进行,如温度。政府机构和研究组织会公布标准、核实分析方式来集成对比不同测试得出的结果。[24]

样本

对水样本进行物理或化学测试有许多方法,可根据精准要求和污染物特征选用。许多污染时间与时间紧密相连,特别是雨季来临时。由此,匆忙搜集的样本常常不足以确定污染水平。在搜集这类数据时,科学家常常使用自动取样机定时取样。

生物样本测验要从水体搜集动植物资料。根据测试种类要求,生物体可能会在测量后放回水体,或通过生物检定法进行解剖来确定毒性

物理测试

常见的物理测试有温度、固体浓度(如总悬浮固体)和浊度。

化学测试

水样本也会用到分析化学来检验。许多现成的测试方式可以用于检验有机和无机化合物。常用的方式包括检验pH值生化需氧量[25]:102化学需氧量[25]:104营养素(硝酸盐化合物)、金属(包括铜、、铅和)、油、总石油烃含量和农药等。

生物测试

生物测试包括利用动植物和微生物作为指标来监控水域生态系统健康。这些生物的功能、数量和状况可以揭示生态系统和环境的现状。[26]例如,桡脚类和其它小型水生甲壳亚门可以作为生态指标。观察这些生物的变化(如生化、生理或行为)可以反映出它们所处的生态系统中的问题。

废水品质指针

在自然的水路或是工业废水中任何可氧化的材料都可以被生化(如细菌)或是化学的方式所氧化。这样会导致水中的含氧量降低。基本上,生化氧化作用的反应式可写作:

可氧化的材料 +细菌 + 营养素 + O2 → CO2 + H2O +已氧化的无机物如NO3或SO4

为了还原像硫化物和亚硝酸盐等化学物质而造成的氧消耗量可以由下列表示:

S-- + 2 O2 → SO4--
NO2 + ½ O2 → NO3

因为所有自然水路都包含细菌跟营养素,所以几乎任何引入这样的水路的废化合物都会产生如同上面所述的生化反应。这些生化反应创造了一个可以在实验室中量测的生化需氧量(BOD)。

被引入自然水路中的可氧化之化学物质(如还原物)也会同样的产生如同上面所述的化学反应。这些化学反应创造了一个可以在实验室中量测的化学需氧量(COD)。

生化需氧量化学需氧量两种测试都是废水污染物的相对缺氧作用的量测。此二者皆广泛应用在污染作用的量测上。生化需氧量测试用来量测可生物降解的污染物需氧量,而化学需氧量测试则是用来量测可生物降解的污染物需氧量加上不可生物降解却可氧化的污染物需氧量之总需氧量。

所谓的「五日生化需氧量」(5-day BOD,BOD5)是用来量测五天的期间内废水污染物的生化氧化作用的总耗氧量。当生化反应完全进行完成之后的耗氧总量称为「最终生化需氧量」(Ultimate BOD)。最终生化需氧量的量测太过于旷日费时,故五日生化需氧量几乎已经是普遍性地应用在量测相对污染作用上。

也有许多的化学需氧量测试。或许,最常用的就是「四小时化学需氧量」(4-hour COD)。

值得一提的是,在五日生化需氧量与最终生化需氧量之间,没有普遍化的相互关系。同样的,在生化需氧量与化学需氧量之间,没有普遍化的相互关系。在特定废水水流中,特定的废水污染物是有可能发展出上述的相互关系,但是这样的相互关系不能够推广到任何其他的废水污染物或是其他任何的废水水流中。

用来确定上述的需氧量的实验室试验流程可以在下列《试验水与废水的标准方法》(Standard Methods For the Examination Of Water and Wastewater)[27]的章节中详细描述:

  • 五日生化需氧量与最终生化需氧量:Section 5210B与5210C
  • 化学需氧量:Section 5220。

污水排放

在一些都会区,污水与街上的迳流被分别用卫生下水道雨水下水道载运。沙井是典型进入这两种下水道的进出口。在高降雨量的时期,可能会发生下水道溢流(简称SSO)的现象,造成潜在的公共卫生生态上的伤害。

污水可以在未经处理或是仅少量处理的情形下,直接流进主要的流域之中。在没有处理的情形下,污水会对环境的品质与人类的健康产生重大的影响。病原体会导致各种各样的病症。一些化学物质即使在低浓度的情形下也会具有风险,而且在长时间下因为动物体或是人体的生物累积,它们会持续保持威胁性。

水质污染的治理

在清理废水上,根据类型和污秽的程度,有许多方法可以使用。大多数的废水可以在工业规模的废水处理场(Wastewater Treatment Plants,WWTPs)中处理,其中会使用包括物理式、化学式还有生物式的处理进程。然而,化粪池与其他污水就地处理设施(OSSF)普遍在乡下地区被广为使用,这其中包括了美国四分之一以上的家庭。最重要的好氧性处理系统是活性污泥法,这个方法必须维持并再循环可以减少废水中有机物的微生物总量。厌氧性的处理方法广泛的被应用在工业废水与生物污泥的处理上。一些废水可以高度净化过后而回收成为中水生态学取向的废水处理方式,像是使用芦苇床处理系统(RBTS)的人工湿地是可能可以采取的方式。现代的处理系统包括由首先是微孔滤膜法(或是Micro filtration,MF)或合成透析膜(synthetic membranes)过滤的三重处理过程。经过滤膜过滤后,处理过的水和从自然水源得到的水,在饮用的水质上无法分辨。可以通过微生物的脱硝作用来移除废水中的硝酸盐,通常会加入小量的甲醇来防止细菌以废水当作碳的来源而滋生。臭氧废水处理(Ozone Waste Water Treatment)也逐渐开始流行,这样的系统需要臭氧产生机(Ozone Generator)[28],利用臭氧气泡过滤通过水槽来净化废水。

来自于工业工厂的废水处理是个困难而且昂贵的问题。大多数的石油炼制厂与石化厂[29] [30]有就地的处理设施去处理它们的废水,故处理后废水在排放到民用的废水处理场或是河流、湖泊或海洋之前,水中污染物浓度必须符合当地或/和国家的合法标准。

工业废水处理

溶气浮选法系统处理工业废水

一些工业设施产生的废水类似常见的生活污水,可以通过市政设施处理。另一些工厂产生的废水中常见污染物含量很高(如油腻),或含毒(如重金属、挥发性有机化合物)及其它不常见污染物(如氨),则需要特殊系统处理。有些工厂安装预处理系统来除去有毒成分,尔后将部分处理过的废水排入市政系统。产生大量废水的工厂通常由自己的处理系统。还有一些工厂重新设计生产工艺,减少或消除污染物,即污染预防。

发电厂和制造厂产生的热水可以如下控制:

艾奥瓦州滨岸缓冲带

农业废水处理

非点源废水控制
美国最大的农业污染来自农田冲刷出来的沉积物土壤松动)。[32]农民可以利用侵蚀控制来减少径流,保持土壤。常用的技术包括等高耕作、护盖农作物、轮作、种植多年生植物、设立溪流缓冲区。[33][34]:pp. 4-95–4-96

农田上用的常见营养物(如)来自于商用肥料、动物有机肥或市政工业废水及淤泥。营养物可以从残余农作物、灌溉流水、野生动物大气沉降进入径流。[34]:p. 2–9农民可以进行养分管理来减少滥用肥料[33][34]:pp. 4-37–4-38及可能的富营养污染。

为减少害虫影响,农民可以使用病虫害综合治理技术(包括生物防治)来控制害虫、减少化学杀虫剂依赖、保护水质。[35]

点源废水处理
大型牲畜和畜禽农场,如工业化农场,即“集中型动物饲养经营”或“饲养场”在美国受到越来越多的政府监管。[36][37] 畜禽粪便在密闭的厌氧塘里处理,尔后撒入操场。人工湿地有时被用于处理动物废弃物。一些畜禽粪便和秸秆堆肥一起混合后高温处理,生成无菌松脆的肥料,改良土壤。

建筑工地控制

建筑工地拦砂网

通过安装如下设施管理建筑工地泥沙:

  • 侵蚀控制:如覆盖物或喷草
  • 泥沙控制:如沉砂池或拦砂网[38]

排放有毒化学物如轮机燃料和分散混凝土预防如下:

  • 防泄漏和控制计划
  • 特殊设计的容器(如混凝土)和结构,如溢出控制和转移护道[39]

城市径流控制

控制城市径流调整池

城市径流有效控制方式包括减少雨水流速流量及减少污染物排放。地方政府利用各种雨水管理技术来减少城市径流影响。这些技术在美国叫做最佳管理措施,专注于控制水量及水质。[40]

污染物预防措施包括低影响开发技术、安装绿化屋顶、优化应用化学品(如管理轮机燃油、化肥和农药)。[41]径流缓和系统包括渗滤池、生态调节池、建设湿地调整池等类似设施。[42][43]

城市径流的热污染可以通过雨水管理系统得以控制,系统吸收径流或将其注入地下水、如生态调节系统和渗滤池。由于在注入溪流前雨水会被阳光加热,渗滤池在调节温度上效果相对欠佳。[40]:p. 5–58

回收再用

经过处理过的废水可利用回收作为饮用水,如新加坡;或是作为工业上的使用,如冷却塔;或是用来作地下水补注(artificial recharge of aquifers);或是用在农业上,像以色列70%的农业灌溉都是用高度净化的废水;或是如佛罗里达沼泽地那样,利用处理过的废水来进行自然生态系的修复重建工作。

香港水质污染处理部门

香港水质污染处理部门有“环境保护署[44]”以及“香港污水处理厂[45]

历史与现状

时期情况
18世纪 英国工业发展中大量的工业废水废渣倾入江河,开始造成泰晤士河污染。后经过百余年的治理,1970年代,水质才得到改善,河流生态逐渐恢复。
19世纪 世纪初,莱茵河发生严重污染。
20世纪
  • 1953年~1972年:日本九州熊本县水俣市水俣病事件。有机汞污染了当地水体,死亡百余人。
  • 1955年~1979年:日本富山县神通川流域痛痛病事件。事件中发生了水体污染。到1977年已死亡200余人。
  • 1980年代:中国松花江发生汞污染事件,近百名渔民被送进医院进行观察治疗。松花江江鱼因为汞蓄积量过高而不能食用。
  • 1980年代末(1987年底)~1992年:由于食用被病毒污染的滩涂贝类毛蚶,引发中国上海甲型肝炎大流行。病毒污染来源于渔民中甲肝患者粪便直接入海,污染了渔场海水。

更多的突发性水质污染事故参看水污染事故列表

参见

维基文库中的相关原始文献:中华人民共和国水污染防治法
维基文库中的相关原始文献:GB 8978-1996污水综合排放标准

参考文献

  1. Pink, Daniel H. . Yahoo. 2006-04-19 [2017-06-30]. (原始内容存档于2006-04-23).
  2. West, Larry. . About.com. 2006-03-26 [2017-06-30]. (原始内容存档于2016-12-27).
  3. (PDF). CHNRI. 2010 [2017-06-30]. (原始内容 (PDF)存档于2013-05-12).
  4. "China says water pollution so severe that cities could lack safe supplies 页面存档备份,存于". Chinadaily.com.cn. June 7, 2005.
  5. Kahn, Joseph; Yardley, Jim. . New York Times. 2007-08-26 [2017-06-30]. (原始内容存档于2016-07-22).
  6. Wachman, Richard. . The Guardian (London). 2007-12-09 [2015-09-23]. (原始内容存档于2017-07-10).
  7. [www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202101/t20210115_817499.html ] 请检查|url=值 (帮助).
  8. (报告). Washington, D.C.: United States Environmental Protection Agency (EPA). January 2009 [2017-06-30]. EPA 841-F-08-003. (原始内容存档于2022-01-03).
  9. United States Geological Survey (USGS), Denver, CO (1998). "Ground Water and Surface Water: A Single Resource." 页面存档备份,存于 Circular 1139.
  10. United States. Clean Water Act, section 502(14), 美国法典第33编 § 第1362节 (14).
  11. U.S. CWA section 402(p), 美国法典第33编 § 第1342(p)节
  12. Moss, Brian. (PDF). Phil. Trans. Royal Society B. 2008, 363: 659–666 [2017-07-06]. doi:10.1098/rstb.2007.2176. (原始内容存档 (PDF)于2017-10-20).
  13. Bull, John L. . . New York : Knopf : distributed by Random House. 1977. ISBN 978-0-394-41405-8.
  14. USGS. Reston, VA. "A Primer on Water Quality." 页面存档备份,存于 FS-027-01. March 2001.
  15. Schueler, Thomas R. "Microbes and Urban Watersheds: Concentrations, Sources, & Pathways." Reprinted in The Practice of Watershed Protection. 页面存档备份,存于 2000. Center for Watershed Protection. Ellicott City, MD.
  16. EPA. “Illness Related to Sewage in Water.”Accessed February 20, 2009. 页面存档备份,存于
  17. EPA. "Report to Congress: Impacts and Control of CSOs and SSOs." 页面存档备份,存于 August 2004. Document No. EPA-833-R-04-001.
  18. G. Allen Burton, Jr., Robert Pitt. . New York: CRC/Lewis Publishers. 2001 [2017-08-01]. ISBN 0-87371-924-7. (原始内容存档于2009-05-19). Chapter 2.
  19. Schueler, Thomas R. "Cars Are Leading Source of Metal Loads in California." Reprinted in The Practice of Watershed Protection. 页面存档备份,存于 2000. Center for Watershed Protection. Ellicott City, MD.
  20. Goel, P.K. . New Delhi: New Age International. 2006: 179. ISBN 978-81-224-1839-2.
  21. Kennish, Michael J. . Marine Science Series. Boca Raton, FL: CRC Press. 1992: 415–17. ISBN 978-0-8493-8041-9.
  22. Laws, Edward A. . New York: John Wiley and Sons. 2000: 430. ISBN 978-0-471-34875-7.
  23. Zaikab, Gwyneth Dickey. . Nature (Macmillan). 2011-03-28. ISSN 0028-0836. doi:10.1038/news.2011.191.
  24. For example, see Baird, Rodger B.; Clesceri, Leonore S.; Eaton, Andrew D.; et al (编). 22nd. Washington, DC: American Public Health Association. 2012 [2020-09-12]. ISBN 978-0875530130. (原始内容需要付费订阅存档于2016-02-11).
  25. Newton, David. . Checkmark Books. 2008. ISBN 0-8160-7747-9.
  26. Karr, James R. . Fisheries. 1981, 6: 21–27. ISSN 1548-8446. doi:10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2.
  27. 可以在www.standardmethods.org 页面存档备份,存于取得
  28. . [2007-12-05]. (原始内容存档于2007-07-14). 外部链接存在于|title= (帮助)
  29. Beychok, Milton R. 1st Edition. John Wiley & Sons. 1967. LCCN 67019834.
  30. Tchobanoglous, G., Burton, F.L., and Stensel, H.D. 4th Edition. McGraw-Hill Book Company. 2003. ISBN 978-0-07-041878-3.
  31. (报告). EPA: 24. September 1997 [2017-07-27]. EPA/310-R-97-007. (原始内容存档于2017-06-20).
  32. U.S. Natural Resources Conservation Service (NRCS). Washington, DC. "National Conservation Practice Standards." 页面存档备份,存于 National Handbook of Conservation Practices. Accessed 2015-10-02.
  33. (报告). EPA. July 2003 [2017-07-28]. EPA-841-B-03-004. (原始内容存档于2016-09-03).
  34. . Pest Control and Pesticide Safety for Consumers. EPA. 2015 [2017-07-28]. (原始内容存档于2017-07-29).
  35. . National Pollutant Discharge Elimination System. EPA. 2016 [2017-07-28]. (原始内容存档于2017-08-01).
  36. Iowa Department of Natural Resources. Des Moines, IA. "Animal Feeding Operations in Iowa." 页面存档备份,存于 Accessed March 5, 2009.
  37. Tennessee Department of Environment and Conservation. Nashville, TN (2012). "Tennessee Erosion and Sediment Control Handbook." 页面存档备份,存于
  38. (报告). Stormwater Best Management Practice. EPA. February 2012 [2017-07-29]. EPA 833-F-11-006. (原始内容存档于2017-07-29).
  39. . (报告). EPA. August 1999 [2017-07-30]. EPA-821-R-99-012. (原始内容存档于2017-07-30).
  40. . National Pollutant Discharge Elimination System. EPA. 2014 [2017-07-30]. (原始内容存档于2015-02-19).
  41. California Stormwater Quality Association. Menlo Park, CA. "Municipal BMP Handbook." 页面存档备份,存于 2003.
  42. New Jersey Department of Environmental Protection. Trenton, NJ. "New Jersey Stormwater Best Management Practices Manual." 页面存档备份,存于 April 2004.
  43. . [2014-03-22]. (原始内容存档于2008-03-16).
  44. (PDF). [2014-03-22]. (原始内容 (PDF)存档于2014-03-22).

外部链接

维基共享资源中相关的多媒体资源:水污染
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.