繞固定軸旋轉
繞固定軸旋轉或軸向旋轉是在三維空間中圍繞旋轉軸固定、靜止不動,或靜止等特殊情況的旋轉運動。這種類型的運動排除了暫態旋轉軸改變其指向的可能性,並且不能描述擺動或進動等現象。根據歐拉旋轉定理,不可能同時沿著多個靜止軸進行旋轉;如果同時強制進行兩次旋轉,將產生一個新的旋轉軸。
這個概念假設旋轉也是穩定的,因此不需要扭矩來保持旋轉。圍繞剛體的固定軸旋轉的運動學和動力學在數學上比剛體的自由旋轉簡單得多;它們完全類似於沿著單一固定方向的線性運動,這對於「剛體的自由旋轉」是不正確的。物體的動能和物體各部分上的力的運算式,對於繞固定軸的旋轉也比一般旋轉運動更簡單。由於這些原因,在學生掌握了線性運動之後,通常在物理入門課程中教授繞固定軸旋轉;在物理學入門課上,通常不會普遍教授全部的旋轉運動。
平移和旋轉
「剛體」是一個範圍有限的物體,其中組成粒子之間的所有距離都是恆定的。外力可以使任何實體變形,所以不存在真正的剛體。因此,就我們的目的而言,剛體是一種需要很大的力才能使其明顯變形的固體。
粒子在三維空間中的位置變化,可以完全由三個座標指定。剛體位置的變化更難描述。它可以被視為兩種不同類型的運動的組合:平移運動和圓周運動。
當物體的每個粒子都具有與其它粒子相同的暫態速度時,就會發生純粹的「平移運動」;那麼任何粒子所追跡到的路徑都與該物體中其它粒子所追跡的路徑完全平行。在平移運動下,剛體位置的變化完全由三個座標指定,如「x」、「y」和「z」,給出固定到剛體的任何點,例如質心,的位移。
如果物體中的每個粒子都繞著一條線在一個圓圈內運動,就會發生純粹的「旋轉運動」。這條線被稱為旋轉軸。然後,從軸到所有粒子的半徑向量同時經歷相同的角位移。旋轉軸不需要穿過該物體。通常,任何旋轉都可以完全由相對於直角坐標軸「x」、「y」和「z」的三個角位移來指定。因此,剛體位置的任何變化都完全由三個平移座標和三個旋轉座標來描述。
剛體的任何位移都可以通過首先使剛體經歷位移然後旋轉,或者相反地,經歷旋轉然後位移來實現。我們已經知道,對於任何一組粒子,無論是在靜止狀態下,如在剛體中,還是在相對運動中,如外殼的爆炸碎片,質心的加速度由下式給出
其中「M」是系統的總質量,「a」cm是質心的加速度。還有一個問題是描述物體繞質心的旋轉,並將其與作用在物體上的外力聯系起來。「繞單軸旋轉運動」的運動學和動力學類似於平移運動的運動學和力學;圍繞單軸的旋轉運動甚至有一個類似於粒子動力學的功能定理。
運動學
角位移
給定一個粒子沿著半徑為的圓的圓周移動,並移動了一段弧長,其角位置相對於其初始位置為,其中 .
在數學和物理學中,通常將平面角的單位弧度視為1,而通常省略它。單位轉換如下:
角位移是角位置的變化:
其中是角位移,是初始角位置,是最終角位置。
角速度
單位時間內角位移的變化稱為沿旋轉軸方向的角速度。角速度的符號為,單位通常為rads−1。角速度是角速度向量的大小。
暫態角速度由下式給出
使用角位置的公式並讓 , 我們也有
其中是粒子的平移速度。 角速度和頻率的關係如下
角加速度
角速度的變化表明剛體中存在角加速度,通常以rads−2為單位量測。經歷一段時間Δt上的平均角加速度由下式給出:
暫態加速度α(t) 由下式給定:
因此,正如加速度是速度的變化速率一樣,角加速度是角速度的變化率。
旋轉物體上任一點的平移加速度由下式給出
其中的「r」是到旋轉軸的半徑或距離。這也是加速度的切向分量:它與點的運動方向相切。如果該分量為0,則運動為等速率圓周運動,並且速度僅在方向上變化。
徑向加速度(垂直於運動方向)由下式給出
它指向旋轉運動的中心,通常被稱為「向心加速度」。
角加速度是由轉矩引起的,根據正負角頻率的約定,轉矩]可以具有正值或負值。扭矩和角加速度之間的關係(啟動、停止或以其它方向改變旋轉的難度)由慣性矩給出:.
動力學
慣性矩
物體的慣性矩,以表示,是衡量物體對其旋轉變化的阻力。慣性矩以千克-米²(kg m2)為單位量測。它取決於物體的質量:增加物體的質量會增加慣性矩。它還取決於質量的分佈:距離旋轉中心越遠的質量分佈會在更大程度上增大慣性矩。對於質量為,且距離旋轉軸的單顆粒子,慣性矩由下式給出
扭矩
扭矩是施加在旋轉物體上的力「F」的扭曲效應,該旋轉物體位於距離其旋轉軸「r」的位置。 在數學上,
其中,×表示叉積。作用在物體上的淨轉矩將根據
就像線性動力學中的F = ma一樣
作用在物體上的扭矩所做的功等於扭矩的大小乘以施加扭矩的角度
扭矩的功率等於扭矩每單位時間所做的功,因此:
角動量
角動量是衡量旋轉物體促其靜止難易度的量。它由下式給定:
其中的總和是取對象中所有粒子的總和。
角動量是慣性矩和角速度的乘積:
就像線性動力學中的p = mv。
旋轉運動中的攪動量類似於線性運動中的動量。旋轉物體(如陀螺)的角動量越大,其繼續旋轉的趨勢就越大。
旋轉物體的角動量與其質量和旋轉速度成正比。此外,角動量取決於質量相對於旋轉軸的分佈方向:質量離旋轉軸越遠,角動量就越大。與質量和旋轉速度相同的空心圓柱體相比,像唱片轉盤這樣的平板具有更小的角動量。
像線性動量一樣,角動量也是向量,其守恆意味著自旋軸的方向往往保持不變。由於這個原因,旋轉的陀螺保持直立,而靜止的陀螺則立即翻轉
角動量方程可用於將物體繞軸的合力矩(有時稱為力矩)與繞該軸的旋轉速率聯系起來。
扭矩和角動量根據
正如線性動力學中的F = dp/dt。在沒有外部力矩的情况下,物體的角動量保持不變。角動量守恆在花樣滑冰中得到了顯著的證明:在旋轉過程中,當將手臂拉近身體時,慣性矩會减小,因此角速度會增加。
向量運算式
上述發展是一般旋轉運動的一個特殊情况。在一般情况下,角位移、角速度、角加速度和轉矩被認為是向量。
角位移被認為是沿著軸指向的向量,其大小等於的大小。使用右手定則來找出它沿軸指向的方向;如果右手的手指以物體旋轉的方向捲曲指向,那麼右手的拇指指向向量的方向。
角速度向量也以與其引起的角位移沿著旋轉軸指向相同的方向。如果從上方看,圓盤逆時針旋轉,其角速度向量指向上方。類似地,角加速度向量沿著旋轉軸指向與角速度相同的方向,如果角加速度保持很長時間,則角速度將指向該方向。
轉矩向量的指向傾向於引起旋轉的軸轉矩。為了保持圍繞固定軸的旋轉,總轉矩向量必須沿著軸,這樣它只會改變角速度向量的大小,而不會改變方向。在鉸鏈的情况下,只有扭矩向量沿軸線的分量對旋轉有影響,其它力和扭矩由結構補償。
數學表示
示例和應用
旋轉平面
九維以下的旋轉平面數量如下表所示:
維數 0 1 2 3 4 5 6 7 8 9 旋轉平面 0 0 1 1 2 2 3 3 4 4
In three dimensions it is an alternative to the axis of rotation, but unlike the axis of rotation it can be used in other dimensions, such as two, four or more dimensions.
數學上,旋轉平面可用多種方式描述。可用平面和旋轉角度來描述,可用克利福德代數的二重向量來描述。旋轉平面又與旋轉矩陣的特徵值和特徵向量有關。(Mathematically such planes can be described in a number of ways. They can be described in terms of planes and angles of rotation. They can be associated with bivectors from geometric algebra. They are related to the eigenvalues and eigenvectors of a rotation matrix.)And in particular dimensions they are related to other algebraic and geometric properties, which can then be generalised to other dimensions.
Planes of rotation are not used much in two and three dimensions, as in two dimensions there is only one plane so identifying the plane of rotation is trivial and rarely done, while in three dimensions the axis of rotation serves the same purpose and is the more established approach. The main use for them is in describing more complex rotations in higher dimensions, where they can be used to break down the rotations into simpler parts. This can be done using geometric algebra, with the planes of rotations associated with simple bivectors in the algebra.[4]