自同构

数学上,自同构(automophism)是从一个数学对象到自身的同构,可以看为这对象的一个对称,将这对象映射到自身而保持其全部结构的一个途径。一个对象的所有自同构的集合是一个,称为自同构群,大致而言,是这对象的对称群

定义

自同构的精确定义,依赖于「数学对象」的种类,及这对象的「同构」的准确界定。可以定义这些概念的最一般情形,是在数学的一个抽象分支,称为范畴论。范畴论是研究抽象对象和这些对象间的态射

在范畴论中,自同构是一个自同态(即是一个对象到自身的一个态射)而同时为(范畴论所定义的)同构

这是一个很抽象的定义,因为范畴论中,态射不一定是函数,对象不一定是集合。不过在更具象的情形中,对象会是有附加结构的集合,而态射会是保持这种结构的函数。

例如在抽象代数中,一个数学对象代数结构,如矢量空间等。一个同构就是双射同态(同态按代数结构而定, 例如群同态环同态线性算子)。

恒等态射(恒等映射)在某些情况称为平凡自同构。相对地,其他(非恒等)自同构称为非平凡自同构

自同构群

如果一个对象X的自同构组成一集合(而不是一个真)那么这些自同构以态射复合运算组成一个群。这个群称为X自同构群。可以直接检查这的确是一个群:

  • 闭合性:两个自同态的复合是另一个自同态。
  • 结合性:态射复合一定有结合性。
  • 单比特素:单比特素是一个对象到自身的恒等映射,按定义一定存在。
  • 逆元素:任一同构按定义都有一个也是同构的逆映射,由于这逆映射也是同一对象的自同态,所以是自同构。

在一个范畴C中的一个对象X的自同构群,记为AutC(X),如果内文明显看出该范畴,可简记为Aut(X)。

例子

  • 集合论中,一个集合X的元素的任一个置换是一个自同构。X的自同构群也称为X上的对称群
  • 初等算术中,整数Z,考虑成在加法下的一个群,有唯一的非平凡自同构:取负。但是,考虑成一个,便仅有平凡自同构。一般而言,取负是任何阿贝尔群的自同构,但不是一个环或的自同构。
  • 群自同构是一个群到自身的群同态。非正式而言,这是一个使得结构不变的群元素置换。对任何群G,有一个自然群同态G → Aut(G),其内自同构群Inn(G),其G中心。因此若G平凡中心,则可以嵌入到其自同构群之中。[1]
  • 线性代数中,矢量空间V的一个自同态是一个线性算子 VV。一个自同构是V上的一个可逆线性算子。当矢量空间V是有限维的,其自同构群即是一般线性群GL(V)。
  • 域自同构是从一个到自身的一个双射环同构有理数Q实数R都没有非平凡域自同构。R的一些子域有非平凡域自同构,但不能扩展至整个R(因为它们不能保持一个数在R中有平方根的性质)。复数C有唯一的非平凡自同构将R映至R复共轭,但是有(不可数)无限多「野性」自同构(假设选择公理)。[2][3]域自同构对域扩张理论很重要,尤其是伽罗瓦扩张。在一个伽罗瓦扩张L/K的情形,L的自同构中,在子域K上逐点固定的所有自同构所组成的子群,称为该扩张的伽罗瓦群
  • p进数Qp没有非平凡自同构。
  • 图论中,一个图自同构,是顶点的一个置换,使得边与非边保持不变:两个顶点若有边连接,则在置换下这两顶点的像有边连接,反之亦然。
  • 几何学中,空间的一个自同构有时称为空间的运动。一些特定名词也会使用:
    • 度量几何中,一个自同构是一个自等距同构。空间的自同构群也称为空间的等距群
    • 黎曼曲面范畴中,一个自同构是一个曲面到自身的双全纯映射(也称为共形映射)。例如黎曼球面的自同构是莫比乌斯变换
    • 一个微分流形M的自同构是从M到自身的微分同胚。自同构群有时记为Diff(M)。
    • 拓扑学中,拓扑空间的态射是连续映射,一个拓扑空间的自同构是空间到自身的同胚,即是自同胚(见同胚群)。在这例子中,一个态射是双射的,并不足以使这态射为一个同构(因其逆映射未必连续)。

历史

群自同构的一个最早期的例子,是爱尔兰数学家威廉·哈密顿在1856年给出。在他的Icosian calculus中,他发现了一个2阶的自同构,[4] 写道:

使得是新的五次单位根,与之前的五次单位根以完美互反性的关系相关联。[5]

内自同构和外自同构

有一些范畴,特别是李代数,其中的自同构可以分为两种,称为「内」自同构和「外」自同构。

对群而言,内自同构就是群本身的元素的共轭作用。对一个群G的每个元素a,以a共轭是一个运算φa : GG,定义为φa(g) = aga−1(或a−1ga;用法各异)。易知以a共轭是一个群自同构。内自同构组成 Aut(G)的一个正规子群,记作Inn(G)。

其他的自同构称为外自同构商群Aut(G) / Inn(G)通常记为Out(G);非平凡元素是包含外自同构的陪集

在任何有幺元的环或代数中的可逆元a,可以同样定义内自同构。对于李代数,定义有少许不同。

另见

  • 自同态环
  • 反自同构
  • 弗罗贝尼乌斯自同构
  • 态射
  • 特征子群

参考文献

  1. PJ Pahl, R Damrath. . Felix Pahl translation. Springer. 2001: 376. ISBN 3-540-67995-2.
  2. Yale, Paul B. (PDF). Mathematics Magazine. May 1966, 39 (3): 135–141 [2015-08-20]. JSTOR 2689301. doi:10.2307/2689301. (原始内容 (PDF)存档于2020-11-08).
  3. Lounesto, Pertti, 2nd, Cambridge University Press: 22–23, 2001, ISBN 0-521-00551-5
  4. Sir William Rowan Hamilton. (PDF). Philosophical Magazine. 1856, 12: 446 [2015-08-20]. (原始内容 (PDF)存档于2016-03-04).
  5. 原文为"so that is a new fifth root of unity, connected with the former fifth root by relations of perfect reciprocity."

外部链接

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.