血管紧张素转化酶2
血管紧张素转化酶2(英語:,;人類的ACE2常被稱為hACE2[5])在人類基因組中由X染色體上的基因編碼,是一種表現於肺、動脈、心臟、腎臟與腸道等組織細胞表面的膜蛋白,為血管紧张素Ⅰ转化酶(ACE)的一個旁系同源體。
ACE2有切割多肽的功能,其多肽酶結構域位於細胞膜外側,一般在細胞膜上作用,可被脫落酶切割後脫離細胞、自組織間移除。ACE2可分別將血管紧张素I和血管紧张素II轉化为血管收縮素(1-9)和血管收縮素(1-7)[6][7],因而在心血管組織中有抗氧化與抗發炎等功能,在肺臟中可避免肺組織的損傷,在骨骼肌中或许能抑制肌肉纖維化。ACE2的表現可緩解許多心血管疾病的症狀,其表現量的下降則與這些疾病有相關性,有研究嘗試開發體外合成的人重組ACE2(rhACE2)為這些疾病的一種藥物。除切割多肽外,ACE2還有若干和多肽酶無關的功能。
ACE2还被SARS-CoV、SARS-CoV-2(屬乙型冠狀病毒)和人類冠狀病毒NL63(屬甲型冠狀病毒)等冠狀病毒用作感染細胞的受体[8],這些病毒刺突蛋白的受体结合域[9](RBD,receptor binding domain)可結合ACE2,進而使病毒進入細胞內。三種病毒的RBD均與ACE2的相同區域結合,但NL63病毒的RBD結構和另兩者差異較大,與ACE2的結合應為趨同演化的結果,且結合力較另外兩種病毒弱。SARS相關病毒也並非皆以ACE2為感染細胞的受體,SARS-CoV-2支系的共祖可能具有和ACE2結合的能力,此支系的病毒又與SARS-CoV支系的病毒發生重組,使部分SARS-CoV相關病毒也獲得此能力。
結構
血管紧张素转化酶2(ACE2)最早於2000年自cDNA基因庫中被發現,為血管紧张素转化酶(ACE)第一個被發現的旁系同源體[6],ACE2的基因位於人類基因組中的X染色體,包括18個外顯子,編碼的蛋白由805個胺基酸組成,與ACE的胺基酸序列相似度為42%[10],是一個帶有鋅離子的金屬蛋白,屬單次跨膜蛋白(第一型膜蛋白),其N端結構域為一M2多肽酶,位於細胞膜外側,可再細分為I與II兩個子結構域(由一個α螺旋相連)[11];C端則與另一種名為collectrin的蛋白同源,包括疏水的跨膜結構域和一個胺基酸轉運體結構域,位於細胞內[12]。
ACE2因有跨膜區域而造成其結構測定的困難,過去僅知其N端多肽酶的結構,直到2020年科學家才用低溫電子顯微鏡測出了與另一蛋白B0AT1結合狀態的完整ACE2結構,發現兩個ACE2和兩個B0AT1組成一複合體,複合體中兩個ACE2有交互作用,B0AT1間則無交互作用,僅與鄰近的ACE2作用,因此研究人員推測細胞膜上的ACE2也可能會形成二聚體[13][14]。
表現組織
人體幾乎所有器官組織都有表現血管紧张素转化酶(ACE),而血管紧张素转化酶2(ACE2)則表現於II型肺泡細胞、小腸腸上皮細胞、血管內皮細胞、血管平滑肌細胞、腎臟上皮細胞等,腦部許多神經元與膠細胞可能也有表現ACE2[10][15]。多數組織中ACE2的轉錄都是由一個較接近其基因的啟動子起始,但肺臟中ACE2基因的轉錄多起始於一個較遠的啟動子,兩啟動子轉錄出的mRNA5端序列稍有不同[16][17]。
功能
切割多肽
血管紧张素转化酶2 | |||||||
---|---|---|---|---|---|---|---|
| |||||||
识别码 | |||||||
EC編號 | 3.4.17.23 | ||||||
数据库 | |||||||
IntEnz | IntEnz浏览 | ||||||
BRENDA | BRENDA入口 | ||||||
ExPASy | NiceZyme浏览 | ||||||
KEGG | KEGG入口 | ||||||
MetaCyc | 代谢路径 | ||||||
PRIAM | 概述 | ||||||
PDB | RCSB PDB PDBj PDBe PDBsum | ||||||
|
血管紧张素转化酶2主要的功能是與血管紧张素Ⅰ转化酶(ACE)拮抗,ACE可將無活性的血管收縮素Ⅰ切割成血管收縮素II,後者可促進抗利尿激素與醛固酮的分泌,以及刺激血管平滑肌收縮,使血壓上升;ACE2則分解血管收縮素Ⅰ和血管收縮素II以抑制其作用,將其C端的胺基酸移除,分別將前者轉化成血管收縮素(1-9),將後者轉化成血管收縮素(1-7)[註 1],其中切割血管收縮素II比切割血管收縮素I的能力高出許多,切割的產物中,血管收縮素(1-9)的功能不明,血管收縮素(1-7)則可刺激一氧化氮合成、抑制MAPK/ERK途徑與TGFβ途徑、以及抑制活性氧物質的生成,因此在心血管組織中有抗氧化與抗發炎等功能[10][13]。許多研究結果顯示ACE2表現量的下降與數種心血管疾病有相關性[19]。
肺泡細胞表現的ACE2有保護肺組織的功能。血管收縮素II可促進肺泡細胞凋亡與肺纖維化[20],因此ACE2將其分解可保護肺免於損傷[21],加上血管收縮素(1-7)可與MAS1受體結合,啟動下游反應以抑制血管收縮素II的作用[21][22]。
在骨骼肌中,血管收縮素II與血管收縮素(1-7)均有重要功能。血管收縮素II透過多種途徑降低肌肉蛋白質的合成,包括抑制Akt-mTOR途徑、促進肌萎缩素1與肌环指蛋白1的合成、生成活性氧物質而活化胱天蛋白酶途徑使細胞凋亡等,肌肉蛋白合成與分解的失衡會造成肌萎缩、肌纖維化等症狀[23][24],因此將血管收縮素II被轉化成血管收縮素(1-7)可停止其作用,且後者還可與MAS1受體結合,活化另一條反應途徑而抑制肌纖維化[13][25]。相較之下ACE2在骨骼肌的直接影響還有待更多研究闡明,有初步研究結果顯示在萎縮的肌肉組織中,ACE2可能可降低纖維化[13][26]。
由於ACE2的表現可緩解許多心血管疾病的症狀,有研究嘗試在體外以細胞株合成ACE2(人重組ACE2;rhACE2)以期作為這些疾病的一種療法[17][27]。
除了切割血管收縮素II外,ACE2還可切割強啡肽A、apelin-13[28]、apelin-36、去精胺酸緩激肽(des-Arg(9) bradykinin)、β-酪啡肽等其他多肽,惟其生理意義仍不明[17][29]。
移除
ACE2的跨膜結構域可被一種稱為金屬蛋白酶17(MMP17)的脱落酶切割,將其胞外部分釋放到血液中,進而從組織間移除[31][32],此過程受到許多調控,例如有一種鈣調蛋白可與ACE2結合以抑制MMP17的切割[33],血管收縮素II也可促進MMP17的活性,把會將其分解的ACE2移除[34],另外許多病理狀況、發炎反應也可促進MMP17對ACE2的切割。脫落酶的切割會造成心血管組織中ACE2的流失、血液中ACE2的濃度升高,因此後者可當作心臟衰竭、心房顫動、動脈粥樣硬化、慢性腎臟病、心肌梗塞與中風等多種疾病的生物標記[13][35]。
冠狀病毒受體
血管紧张素转化酶2被許多冠狀病毒用來當作感染細胞的受體,包括造成普通感冒的人類冠狀病毒NL63(屬甲型冠狀病毒)[36]、與MERS-CoV關係接近的祖魯棕蝠冠狀病毒(NeoCoV)[37]、造成SARS的SARS-CoV[38][39]和造成2019冠狀病毒病的SARS-CoV-2(屬乙型冠狀病毒)[40]等,這些病毒刺突蛋白S1結構域中的受體結合結構域(receptor binding domain;RBD)和ACE2胞外的區域結合後,刺突蛋白可能被細胞表面的跨膜丝氨酸蛋白酶2(TMPRSS2)切割,促使病毒外膜和宿主細胞膜融合而讓病毒進入細胞質[41];此外SARS-CoV與SARS-CoV-2[42]還可能在不被TMPRSS2切割的情況下,與ACE2受體一起藉由內吞作用進入細胞,隨後其刺突蛋白在溶體中被組織蛋白酶切割後,再從溶體進入細胞質中[43][44][45]。
SARS-CoV與SARS-CoV-2的RBD結構相似,胺基酸序列相似度為72%,SARS-CoV的RBD和ACE2結合時,與其直接接觸的胺基酸共有16個,其中8個位點在SARS-CoV-2中為對應相同胺基酸,另外8個則不同,因此兩者與ACE2結合的機制略有差異[46]。SARS-CoV-2的RBD有6個胺基酸為與ACE2結合所需,包括白胺酸455、苯丙胺酸486、麩醯胺酸493、絲胺酸494、天門冬醯胺501與酪氨酸505[47],與ACE2的結合力高於SARS-CoV[48]。人類冠狀病毒NL63之RBD則與前兩者的結構差異較大,卻能和ACE2的同一區域結合,為趨同演化的結果,但NL63和ACE2的結合力較弱,可能是其感染症狀較輕微的原因之一[46]。
而SARS相關病毒亦非皆以ACE2為感染細胞的受體,SARSr-CoV中,使用ACE2為受體的病毒株包含SARS-CoV支系的果子狸SARS冠狀病毒、WIV1、SHC014、WIV16、LYRa11、Rs4874、Rs7327等(以上病毒的RBD序列可再分成兩支),以及SARS-CoV-2支系的RaTG13和穿山甲冠狀病毒,上述以ACE2為受體的蝙蝠病毒皆是在中國雲南省發現;SARS-CoV支系的YNLF_31C、YNLF_34C、BtKY72、BM48-31、16BO133、HKU3、Rm1和Rf1等,以及SARS-CoV-2支系的RmYN02之RBD則應無法與ACE2結合,而是使用其他蛋白作為感染的受體,這些病毒株的RBD大多具有兩段序列缺失,可能因此影響和ACE2結合的能力[註 2][49]。SARSr-CoV中,與ACE2的結合能力應為多次起源,有學者提出SARS-CoV-2支系病毒的共祖可能可和ACE2結合(RmYN02則是後來才喪失了此能力),後來某個SARS-CoV-2支系的病毒曾和SARS-CoV支系的病毒發生重組,造成部分SARS-CoV支系的病毒也獲得了和ACE2結合的能力[49]。
演化
早期的脊索動物已具有ACE2,海鞘(尾索動物)與文昌魚(頭索動物)皆尚無血管紧张素等肾素-血管紧张素系统的多數蛋白,但已具有ACE與ACE2[50]。脊椎動物(魚類、兩生類、爬行類、鳥類與哺乳類)皆具有ACE2,且其結構的保守度很高[46]。此外有些細菌(如野油菜黄单胞菌柑橘致病变种)具有和ACE同源的蛋白,體外實驗結果顯示其具有將血管紧张素I切割成血管紧张素II的能力[51],以各生物中的ACE與ACE2序列製作的系統發生樹顯示細菌ACE與海鞘、文昌魚的ACE2關係較為接近,可能是由海鞘的ACE2經水平基因轉移至細菌基因組中[50]。
註腳
参考文献
- GRCh38: Ensembl release 89: ENSG00000130234 - Ensembl, May 2017
- GRCm38: Ensembl release 89: ENSMUSG00000015405 - Ensembl, May 2017
- . National Center for Biotechnology Information, U.S. National Library of Medicine.
- . National Center for Biotechnology Information, U.S. National Library of Medicine.
- Kasmi Y, Khataby K, Souiri A. . Ennaji MM (编). . Volume 1: Fundamental and Basic Virology Aspects of Human, Animal and Plant Pathogens. Elsevier. 2019: 135 [2021-03-04]. ISBN 978-0-12-819400-3. (原始内容存档于2020-07-24).
- Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N; et al. . Circ Res. 2000, 87 (5): E1–9. PMID 10969042. doi:10.1161/01.res.87.5.e1.
- Keidar S, Kaplan M, Gamliel-Lazarovich A. . Cardiovasc Res. 2007, 73 (3): 463–9 [2008-12-11]. PMID 17049503. (原始内容存档于2009-01-23).
- Weiss SR, Navas-Martin S. . Microbiol Mol Biol Rev. 2005, 69 (4): 635–64. PMID 16339739.
- 沈媚, 陈冰清, 于瑞嵩, 朱于敏, 李震. . 微生物学通报. 2017, 44 (10): 2452-2462 [2021-09-12]. (原始内容存档于2022-05-02).
- Burrell LM, Johnston CI, Tikellis C, Cooper ME. . Trends Endocrinol Metab. 2004, 15 (4): 166–9 [2021-03-04]. PMC 7128798 . PMID 15109615. doi:10.1016/j.tem.2004.03.001. (原始内容存档于2021-03-04).
- Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T; et al. . J Biol Chem. 2004, 279 (17): 17996–8007. PMID 14754895. doi:10.1074/jbc.M311191200.
- Turner AJ. . Unger T, Ulrike M, Steckelings UM, dos Santos RA (编). . Academic Press. 2015: 185–189. ISBN 978-0-12-801364-9. doi:10.1016/B978-0-12-801364-9.00025-0.
- Yamamoto K, Takeshita H, Rakugi H. . Clin Sci (Lond). 2020, 134 (22): 3047–3062 [2021-03-04]. PMC 7687025 . PMID 33231620. doi:10.1042/CS20200486. (原始内容存档于2021-03-04).
- Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. . Science. 2020, 367 (6485): 1444–1448 [2021-03-04]. PMC 7164635 . PMID 32132184. doi:10.1126/science.abb2762. (原始内容存档于2021-03-04).
- Kabbani, Nadine; Olds, James L. . Molecular Pharmacology. 1 April 2020, 97 (5): 351–353. PMC 7237865 . PMID 32238438. doi:10.1124/molpharm.120.000014.
- Pedersen KB, Chhabra KH, Nguyen VK, Xia H, Lazartigues E. . Biochim Biophys Acta. 2013, 1829 (11): 1225–35 [2021-03-04]. PMC 3838857 . PMID 24100303. doi:10.1016/j.bbagrm.2013.09.007. (原始内容存档于2021-03-04).
- Jia H, Yue X, Lazartigues E. . Nat Commun. 2020, 11 (1): 5165 [2021-03-04]. PMC 7560817 . PMID 33057007. doi:10.1038/s41467-020-18880-0. (原始内容存档于2021-03-04).
- Domenig O, Manzel A, Grobe N, Königshausen E, Kaltenecker CC, Kovarik JJ; et al. . Sci Rep. 2016, 6: 33678. PMC 5030486 . PMID 27649628. doi:10.1038/srep33678.
- Raizada MK, Ferreira AJ. . J Cardiovasc Pharmacol. 2007, 50 (2): 112–9 [2021-03-04]. PMID 17703127. doi:10.1097/FJC.0b013e3180986219. (原始内容存档于2021-03-04).
- Uhal BD, Li X, Xue A, Gao X, Abdul-Hafez A. . Am J Physiol Lung Cell Mol Physiol. 2011, 301 (3): L269–74 [2021-03-04]. PMC 3174737 . PMID 21665960. doi:10.1152/ajplung.00222.2010. (原始内容存档于2021-03-04).
- Samavati L, Uhal BD. . Front Cell Infect Microbiol. 2020, 10: 317. PMC 7294848 . PMID 32582574. doi:10.3389/fcimb.2020.00317.
- Gopallawa I, Uhal BD. . Am J Physiol Lung Cell Mol Physiol. 2016, 310 (3): L240–8. PMC 4888557 . PMID 26637635. doi:10.1152/ajplung.00187.2015.
- Cabello-Verrugio C, Morales MG, Rivera JC, Cabrera D, Simon F. . Med Res Rev. 2015, 35 (3): 437–63. PMID 25764065. doi:10.1002/med.21343.
- Winslow MA, Hall SE. . J Cell Mol Med. 2019, 23 (9): 5836–5845. PMC 6714228 . PMID 31273946. doi:10.1111/jcmm.14412.
- Morales MG, Abrigo J, Meneses C, Cisternas F, Simon F, Cabello-Verrugio C. . Histochem Cell Biol. 2015, 143 (2): 131–41 [2021-03-04]. PMID 25208653. doi:10.1007/s00418-014-1275-1. (原始内容存档于2021-03-04).
- Riquelme C, Acuña MJ, Torrejón J, Rebolledo D, Cabrera D, Santos RA; et al. . PLoS One. 2014, 9 (4): e93449 [2021-03-04]. PMC 3973684 . PMID 24695436. doi:10.1371/journal.pone.0093449. (原始内容存档于2021-03-04).
- Mirabito Colafella, Katrina M.; Uijl, Estrellita; Jan Danser, A.H. : 523–530. 2019. doi:10.1016/B978-0-12-801238-3.65341-2.
- Yang P, Kuc RE, Brame AL, Dyson A, Singer M, Glen RC; et al. . Front Neurosci. 2017, 11: 92 [2021-03-04]. PMC 5329011 . PMID 28293165. doi:10.3389/fnins.2017.00092. (原始内容存档于2021-03-04).
- Nicholls J, Peiris M. . Nat Med. 2005, 11 (8): 821–2. PMC 7095949 . PMID 16079870. doi:10.1038/nm0805-821.
- Schmoldt A, Benthe HF, Haberland G. . Biochem Pharmacol. 1975, 24 (17): 1639–41 [2021-03-04]. doi:10.1371/journal.pone.0034747. (原始内容存档于2021-03-04).
- Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, et al. . The Journal of Biological Chemistry. August 2005, 280 (34): 30113–9. PMID 15983030. doi:10.1074/jbc.M505111200.
- Patel VB, Clarke N, Wang Z, Fan D, Parajuli N, Basu R, et al. . Journal of Molecular and Cellular Cardiology. January 2014, 66: 167–76. PMID 24332999. doi:10.1016/j.yjmcc.2013.11.017.
- Lambert DW, Clarke NE, Hooper NM, Turner AJ. . FEBS Lett. 2008, 582 (2): 385–90. PMC 7094239 . PMID 18070603. doi:10.1016/j.febslet.2007.11.085.
- Xu P, Derynck R. . Mol Cell. 2010, 37 (4): 551–66. PMC 4240279 . PMID 20188673. doi:10.1016/j.molcel.2010.01.034.
- Patel VB, Zhong JC, Grant MB, Oudit GY. . Circ Res. 2016, 118 (8): 1313–26 [2021-03-04]. PMC 4939482 . PMID 27081112. doi:10.1161/CIRCRESAHA.116.307708. (原始内容存档于2021-03-04).
- . National Center for Biotechnology Information (NCBI). U.S. National Library of Medicine. 2020-02-28 [2021-02-22]. (原始内容存档于2014-12-24).
- Xiong, Q., Cao, L., Ma, C.; et al. . Nature. 2022, 612: 748–757. doi:10.1038/s41586-022-05513-3.
- Fehr AR, Perlman S. . . Methods in Molecular Biology 1282. Springer New York. 2015: 1–23. ISBN 978-1-4939-2437-0. PMC 4369385 . PMID 25720466. doi:10.1007/978-1-4939-2438-7_1.
Many α-coronaviruses utilize aminopeptidase N (APN) as their receptor, SARS-CoV and HCoV-NL63 use angiotensin-converting enzyme 2 (ACE2) as their receptor, MHV enters through CEACAM1, and the recently identified MERS-CoV binds to dipeptidyl-peptidase 4 (DPP4) to gain entry into human cells (See Table 1 for a list of known CoV receptors).
- Li F. . Antiviral Research. October 2013, 100 (1): 246–54. PMC 3840050 . PMID 23994189. doi:10.1016/j.antiviral.2013.08.014.
- . Q&A on coronaviruses. World Health Organization. [22 February 2020]. (原始内容存档于2020-03-05).
- Akhmerov Akbarshakh; Marban Eduardo. . Circulation Research. 2020, 0 (10): 1443–1455. PMC 7188058 . PMID 32252591. doi:10.1161/CIRCRESAHA.120.317055.
- Ou X, Liu Y, Lei X, Li P, Mi D, Ren L; et al. . Nat Commun. 2020, 11 (1): 1620 [2021-03-04]. PMC 7100515 . PMID 32221306. doi:10.1038/s41467-020-15562-9. (原始内容存档于2021-03-04).
- Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C. . Cell Research. February 2008, 18 (2): 290–301. PMC 7091891 . PMID 18227861. doi:10.1038/cr.2008.15.
- Millet JK, Whittaker GR. . Virology. April 2018, 517: 3–8. PMC 7112017 . PMID 29275820. doi:10.1016/j.virol.2017.12.015.
- Huang IC, Bosch BJ, Li F, Li W, Lee KH, Ghiran S; et al. . J Biol Chem. 2006, 281 (6): 3198–203 [2021-03-04]. PMID 16339146. doi:10.1074/jbc.M508381200. (原始内容存档于2021-03-04).
- Chen Y, Guo Y, Pan Y, Zhao ZJ. . Biochem Biophys Res Commun. 2020. PMC 7092824 . PMID 32081428. doi:10.1016/j.bbrc.2020.02.071.
- Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. . Nat Med. 2020, 26 (4): 450–452 [2021-03-04]. PMC 7095063 . PMID 32284615. doi:10.1038/s41591-020-0820-9. (原始内容存档于2021-03-04).
- Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A; et al. . Proc Natl Acad Sci U S A. 2020, 117 (21): 11727–11734. PMC 7260975 . PMID 32376634. doi:10.1073/pnas.2003138117.
- Wells, H L; Letko, M; Lasso, G; Ssebide, B; Nziza, J; Byarugaba, D K; Navarrete-Macias, I; Liang, E; et al. . Virus Evolution. 2021. ISSN 2057-1577. doi:10.1093/ve/veab007.
- Fournier D, Luft FC, Bader M, Ganten D, Andrade-Navarro MA. . J Mol Med (Berl). 2012, 90 (5): 495–508. PMC 3354321 . PMID 22527880. doi:10.1007/s00109-012-0894-z.
- Rivière G, Michaud A, Corradi HR, Sturrock ED, Ravi Acharya K, Cogez V; et al. . Gene. 2007, 399 (1): 81–90. PMC 7127174 . PMID 17597310. doi:10.1016/j.gene.2007.05.010.
- Bibiana S O F, Vargas-Pinilla P, Amorim CEG, Sortica VA, Bortolini MC. . Genet Mol Biol. 2020, 43 (2): e20200104. PMC 7278419 . PMID 32520981. doi:10.1590/1678-4685-GMB-2020-0104.