有形数
有形数是可以排成有一定规律形状的数。有形数是毕达哥拉斯学派的关注重点之一,他们认为数和形有不可分割的关系。有形数都是自然数,它们可以用小石子堆砌。有形数是将数形象化的方法。
一般地,任意一个自然数都可以表示为n个n边形数的和。(此即费马多边形数定理)
前几个平面上的有形数为:(不考虑trivial case,也就是n为n边形数的情形)
6, 9, 10, 12, 15, 16, 18, 21, 22, 24, 25, 27, 28, 30, 33, 34, 35, 36, 39, 40, 42, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 63, 64, 65, 66, 69, 70, 72, 75, 76, 78, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 94, 95, 96, 99, 100, ... (OEIS数列A090466)
例子
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.