外代数

外代数英语:)也称为格拉斯曼代数(Grassmann algebra),以纪念数学家赫尔曼·格拉斯曼

左图:由矢量的有序集所定义出的定向
右图:反定向,对应到加上负号的外积
实外代数中,n 阶元素的几何诠释:n = 0(具有正负号的点),1(具有指向的线段,即矢量),2(具有定向的平面元),3(具有定向的体积)。n个矢量的外积可以图像化为n维几何物体(例如n平行六面体, n椭球);其大小为超体积(hypervolume),其定向的定义由(n − 1)维边界以及物体内部在哪一侧来决定。[1][2]

数学上,矢量空间的外代数是一个特定有单位的结合代数,其包含了为其中一个子空间。它记为. 而它的乘法,称为楔积外积,记为. 楔积是结合的和双线性的;其基本性质是它在上是交错的,也就是:

,对于所有矢量

这表示

,对于所有矢量,以及
,当 线性相关时。

值得注意的是,以上三性质只对中矢量成立,不是对代数中所有矢量成立。

外代数事实上是“最一般的”满足这些属性的代数。这意味着所有在外代数中成立的方程只从上述属性就可以得出。的这个一般性形式上可以用一个特定的泛性质表示,请参看下文。

形式为的元素,其中中,称为-矢量。所有-矢量生成的的子空间称为-阶外幂,记为。外代数可以写作每个阶幂的直和

该外积有一个重要性质,就是-矢量和-矢量的积是一个-矢量。这样外代数成为一个分次代数,其中分级由给出。这些-矢量有几何上的解释:2-矢量代表以为边的带方向的平行四边形,而3-矢量代表带方向的平行六面体,其边为, , 和

外幂的主要应用在于微分几何,其中他们用来定义微分形式。因而,微分形式有一个自然的楔积。所有这些概念由格拉斯曼提出。

定义及运算律

外代数有很多种等价的定义,下面的定义是最简洁的一个。

定义:是域 上的一个矢量空间,让则定义

张量代数理想(即双边理想),该理想是由所有形如的张量生成的(其中任意),则将上的外代数定义为商代数,即

并且把等价类[3] 记为,其中 。设

-阶外幂th exterior power of ),称中的元素为-矢量-multivector)。

注:

  1. ,当且仅当时才有,因此,可以把等同于,并且把记为;基于类似的原因,可以把等同于,而且把记为。这一点是前面所讲的能够把记为 的特例和前提。
  2. 时,-矢量并不仅限于形如的元素,例如,也是2-矢量,其中.
  3. 理想中的元素并不仅限于形如的张量,例如,
    1. , 必定有 .
    2. , 由于以及,显然有,这就有一个推论:所有的二阶对称张量都在理想中。
    3. 由于上面的两个结论,,我们有,这是因为等式右边的每一项都在中。对张量的阶数作数学归纳法,则可以证明:, ,总有
  4. ,则作为等价类含有唯一的一个完全反对称的代表元,可以把这个-阶的完全反对称张量等同于, 详见后面的“反对称算子和外幂”一节。在有些文献中,-矢量就是以这种方式定义的。

运算律 将上面的注中的内容用写出,则分别给出

(1) ,

证明如下: 作为等价类,我们从中任意挑选一个代表元,则而且。根据商代数的定义,

类似地,可以证明

(2) 根据注3.1中的内容,显然有.

(3) 根据注3.2中的内容,对任意成立着

注:即使特征为2,这个公式也是对的,只不过此时有而已。

(4) 根据商代数的定义以及张量代数的性质,运算满足结合律分配律

其中都是任意的。

以前两条性质为例,其证明如下:设张量分别是中的代表元,即, , , 则

(5) 根据上面的(3)和(4),用数学归纳法可以证明:

证明从略。

基底和维数

维数,则集合

阶外幂的一个基。理由如下:给定任何如下形式的楔积

则每个矢量可以记为基矢量的一个线性组合;利用楔积的双线性性质,这可以扩张为那些基矢量的楔积的线性组合。任何出现同样基矢量两次的楔积为0;任何基矢量出现的次序不正确的可以重新排序,在交换任何两个基矢量的时候变换符号。一般来讲,最后基-矢量前的系数可以用通过积来描述矩阵子式来计算。

数一下基元素,我们可以看到的维数是nk。特别的有, 对于.

外代数是一个分级代数,是如下直和

其维数等于二项式系数之和,也就是.

例子: 欧氏三维空间的外代数

考虑空间,其基为。一对矢量

的楔积为

其中是三维空间的基底。

再加一个矢量

,

这三个矢量的楔积是

其中是一维空间的基底。

空间, 而空间。取所有四个子空间的直和得到一个矢量空间,这是八维矢量空间

.

那么,给定一对8维矢量, 其中如上给出,而

,

的楔积如下(用列矢量表达),

.

容易验证8维楔积以矢量为乘法幺元。也可以验证该代数的楔积是结合的(也是双线性的):

所以该代数是有单位且结合的。

叉乘的实质,赝矢量与赝标量

对三维欧几里得空间可以创建一个线性同构如下:任取右手的标准正交基,规定分别映射为,则的定义与右手的标准正交基如何选取无关。

不难看出,对任意矢量,这个线性同构把映射为。这就是叉乘(矢量积)的实质。例如,平行四边形的面积矢量可以表示为. 经过推广之后,高维黎曼流形中的的二维曲面的面积则可以用

来计算(其中是度规张量场上的诱导度规 的坐标分量),由此可以看到外积和叉乘的深刻关系。

在物理学中,矢量极矢量)与赝矢量轴矢量)两个概念经常需要加以区分。从根本上说,矢量是中的元素,所以在空间反演变换下不会改变方向;而赝矢量其实是中的元素,故在空间反演变换下会改变方向。

类似地,借助于右手的标准正交基,可以把中的元素映射为“标量"。但是,在空间反演变换下它就会原形毕露,所以称它为赝标量。真正的标量在空间反演下是不变的,而赝标量在空间反演下会改变符号。

把 2-矢量映射为矢量以及把 3-矢量映射为一个实数的映射实际上是一个叫做霍奇对偶线性映射

泛性质及构造

为一个(在多数应用中,也就是实数域)上的矢量空间。是“最一般”的包含的并有一个交替乘法在上由单位的结合-代数这个事实可以用如下的泛性质形式化的表达:

任给一个有单位的结合 -代数和一个-线性映射使得对于每个属于成立,则存在恰好一个由单位的代数同态使得所有属于成立。

外代数的泛性质
外代数的泛性质

要构造最一般的包含的代数,而且其乘法是在上交替的,很自然可以从包含的最一般的代数开始,也就是张量代数,然后通过合适的来强制交替的性质。这样我们取中由所有形为的元素生成的双边理想,其中属于,并定义

(并且使用中的乘法的代号)。然后可以直接证明包含并且满足上述泛性质。

如果不是先定义然后把外幂等同为特定的子空间,我们也可以先定义空间然后把它们合并成为一个代数。这个方法在微分集合中常常用到,并在下节中有描述。

反对称算子和外幂

给定两个矢量空间,一个从反对称算子是一个多线性映射

使得只要线性相关的矢量,则

.

最著名的例子是行列式值,从的反对称线形算子。

映射

它关联中的个矢量到他们的楔积,也就是它们相应的-矢量,这也是反对称的。事实上,这个映射是定义在上的“最一般”的反对称算子:给定任何其它反对称算子,存在一个唯一的线性映射。这个泛性质表述了空间并且可以作为它的定义。

所有从到基域的反对称映射组成一个矢量空间,因为两个这样的映射的和、或者这样一个映射和一个标量的乘积也是反对称的。若是有限维的,维数,则该空间可以认同为,其中表示的对偶空间。特别的有,从的反对称映射的空间是维的。

在这个等同关系下,若基域是或者,楔积有一个具体的形式:它从两个给定的反对称映射得到一个新的反对称映射。设为两个反对称映射。和在多线性映射的张量积的情况一样,楔积的变量数是每个映射的变量数之和。它定义如下:

其中多线性映射的交替定义为其变量的所有排列的带符号平均:

注意: 有一些书中楔积定义为

指标记法

在主要由物理学家使用的指标记法中有:

微分形式

为一个微分流形。一个微分k-形式余切丛阶外幂)的一个截面。等价的有:的光滑函数,对于的每个点给定一个的元素。大致来讲,微分形式是余切矢量的全局版本。微分形式是微分几何的重要工具,其中,它们被用于定义德拉姆上同调亚历山大-斯潘尼尔上同调

推广

给定一个交换环和一个-,我们可以定义和上文一样的外代数,它是张量代数适当的商。它会满足类似的泛性质。

物理应用

格拉斯曼代数在物理中有重要应用,它们被用于建模和费米子超对称性相关的各种概念。

参看超空间超代数超群

注释

  1. R. Penrose. . Vintage books. 2007. ISBN 0-679-77631-1.
  2. J.A. Wheeler, C. Misner, K.S. Thorne. . W.H. Freeman & Co. 1973: 83. ISBN 0-7167-0344-0.
  3. 由下述等价关系 所形成的等价类:

相关课题

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.