截面 (纤维丛)

数学拓扑学领域中,拓扑空间 B纤维丛 π: E B 的一个截面横截面(),是一个连续映射 s : B E,使得对 x 属于 Bπ(s(x))=x

纤维丛 p : E B 的一个截面 s。一个截面使得可以将底空间 B 等同于 E 的子空间 s(B)。
R2 上一个向量场。切丛的一个截面是一个向量场。

从函数图像开始

截面是函数图像概念的某种推广。一个函数 g : X Y 的图像可以等价于取值为 XY笛卡儿积的一个函数:

一个截面是什么是一个函数图像的抽象刻划。令 π : E X 是到第一个分量的投影:π(x,y) = x,则一个图是任何使得 π(f(x))=x 的函数。

纤维丛的语言保证了截面的概念可以推广到当 E 不必为一个笛卡儿积的情形。如果 π : E B 是一个纤维丛,则一个截面是在每个纤维中选取一个点 f(x) 。条件 π(f(x)) = x 不过意味着在点 x 处的截面必须在 x 上(见右上图)。

例如,当 E 是一个向量丛E 的一个截面是在每一点 x B 上的向量空间 Ex 中有一个元素。特别地,光滑流形 M 上一个向量场是在 M 的每一点选取一个切向量:这是 M 的切丛的一个截面。类似地,M 上一个 1-形式余切丛的一个截面。

局部截面

纤维丛一般不一定有如上的整体截面,从而定义局部截面也是有用的。纤维丛的一个局部截面()是一个连续函数 f : U E,其中 UB 的一个开集,并满足 π(f(x))=x 对所有 x U。如果 (U, φ) 是 E 的一个局部平凡化,这里 φ 是从 π-1(U) 到 U × F 一个同胚(这里 F纤维),在 U 上的整体截面总存在且一一对应于从 UF 的连续函数。局部截面形成了 B 上一个,称为 E截面层()。

一个纤维丛 EU 上的连续截面有时记成 C(U,E),而 E 的整体截面通常记做 Γ(E) 或 Γ(B,E)。

截面在同伦论代数拓扑中都有研究,其中一个主要目标是确定整体截面的存在性或不存在性。这导向了层上同调示性类理论。例如,一个主丛有一个整体截面当且仅当它是平凡的。另一方面,一个向量丛总有一个整体截面,即零截面。但只有当它的欧拉类为零时,才有在任何地方都不为零的整体截面。关于向量场的零点可参见庞加莱-霍普夫定理

光滑截面

截面,特别是对主丛和向量丛,是微分几何中的重要工具。在这种情形,底空间 B 是一个光滑流形 M,而 E 总假设是 M 上一个光滑纤维丛(即 E 是一个光滑流形且投影 π: E M 是一个光滑映射)。此时,我们考虑 E 在一个开集 U 上的光滑截面,记做 C(U,E)。在几何分析中,考虑具有中等正则性的截面也是有用的。例如 Ck 截面,或满足赫尔德条件索伯列夫空间的截面。

另见

参考文献

  • Norman Steenrod, The Topology of Fibre Bundles, Princeton University Press (1951). ISBN 0-691-00548-6.
  • David Bleecker, Gauge Theory and Variational Principles, Addison-Wesley publishing, Reading, Mass (1981). ISBN 0-201-10096-7.

外部链接

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.