超氧化物歧化酶
超氧化物歧化酶(英語:,缩写)是一种能够催化超氧化物通过歧化反应转化为氧气和过氧化氢的酶。它广泛存在于各类动物、植物、微生物中,是一种重要的抗氧化剂,保护暴露于氧气中的细胞。
Superoxide dismutase | |||||||
---|---|---|---|---|---|---|---|
Structure of a human Mn superoxide dismutase 2 tetramer.[1] | |||||||
| |||||||
识别码 | |||||||
EC編號 | 1.15.1.1 | ||||||
CAS号 | 9054-89-1 | ||||||
数据库 | |||||||
IntEnz | IntEnz浏览 | ||||||
BRENDA | BRENDA入口 | ||||||
ExPASy | NiceZyme浏览 | ||||||
KEGG | KEGG入口 | ||||||
MetaCyc | 代谢路径 | ||||||
PRIAM | 概述 | ||||||
PDB | RCSB PDB PDBj PDBe PDBsum | ||||||
基因本体 | AmiGO / EGO | ||||||
|
催化反应
- M(n+1)+ − SOD + O2− → Mn+ − SOD + O2
- Mn+ − SOD + O2− + 2H+ → M(n+1)+ − SOD + H2O2.
其中,M可以表示Cu (n=1);Mn (n=2);Fe (n=2);Ni (n=2)。
在此反应中,金属离子M的氧化态在n和n+1之间来回变化。
分类
常用
超氧化物歧化酶由Irwin Fridovich和Joe M. McCord首次发现,先前它们被认为是几个未知功能的金属蛋白质。超氧化物歧化酶以多个常见形式存在:它们以铜和锌、或锰、铁、或镍作为辅因子。
- 基本上所有的真核细胞的细胞内都含有带有铜和锌的超氧化物歧化酶(Cu-Zn-SOD)。例如,市场上销售的从牛红血球中纯化的Cu-Zn-SOD,PDB 1SXA (页面存档备份,存于), EC 1.15.1.1。Cu-Zn-SOD是一个二聚体,分子量为32,500。两个亚基主要通过疏水和静电相互作用结合在一起。铜和锌则与活性位点上的组氨酸侧链形成配位键。
- 几乎所有的线粒体和许多细菌(如大肠杆菌)含有结合锰的超氧化物歧化酶(Mn-SOD)。例如,人类线粒体中的Mn-SOD,PDB 1N0J, EC 1.15.1.1。锰离子与三个组氨酸的侧链、一个天冬氨酸的侧链和一个水分子或羟基(取决于锰的氧化态)配位结合。
- 大肠杆菌和其他一些细菌还含有结合铁的超氧化物歧化酶(Fe-SOD):一些细菌只含Fe-SOD,另一些只含Mn-SOD,还有一些则两种都含有。例如,大肠杆菌中的Fe-SOD:PDB 1ISA (页面存档备份,存于), EC 1.15.1.1。Fe-SOD也被发现存在于植物的色素体中。Mn-SOD和Fe-SOD的活性位点具有同样类型的氨基酸与金属离子配位。
- 在高等植物中,不同形式的超氧化物歧化酶定位于不同的细胞区室中。Mn-SOD存在于线粒体和过氧化物酶体;Fe-SOD主要位于叶绿体,但在过氧化物酶体中也能够被检测到;CuZn-SOD则定位于原生质、叶绿体、过氧化物酶体和质外体(apoplast)中。[5][6]
人体中
|
|
|
在人体中(与其他哺乳动物和大多数脊索动物相似),超氧化物歧化酶也含有三类:SOD1定位于细胞质中;SOD2位于线粒体;SOD3则位于细胞外。SOD1为二聚体,而其他两类则为四聚体。SOD1和SOD3的活性位点含有铜和锌,而SOD2则含有锰。它们的基因分别定位于21号、6号和4号染色体(21q22.1, 6q25.3 and 4p15.3-p15.1)。
生物化学性质
超氧化物歧化酶能够清除超氧化物,保护细胞免受氧化损伤。超氧化物与非自由基的反应是自旋禁阻的。在生物学系统中,这就意味着它主要是与自身(歧化)或另一个生物学自由基(如一氧化氮)反应。超氧化物阴离子自由基(O2−)能够较快地(在pH=7时,反应速度为~105 M−1 s−1)歧化为O2和过氧化氢(H2O2)。但超氧化物能够与特定的分子(如NO自由基)以更快的速度反应,生成过氧亚硝酸根离子(O=N-O-O−),因此超氧化物歧化酶的催化作用就显得尤为重要。而且,超氧化物的歧化反应与其初始浓度的平方相关,因此虽然高浓度的超氧化物半衰期很短(比如0.1mM浓度下为0.05秒),但低浓度的超氧化物的半衰期相当长(0.1nM浓度下可达14小时)。相比较而言,超氧化物歧化酶催化的歧化反应对于超氧化物初始浓度只是一级反应,并且在所有已知酶中具有最快的转换数(与底物反应速率)(~7 x 109 M−1 s−1)[9],因此反应速率的限制只是在于酶和超氧化物分子间的碰撞频率,即反应速率是“扩散限制性”的。
生理学性质
超氧化物是细胞中主要的活性氧之一,因此超氧化物歧化酶发挥了关键的抗氧化剂的作用。超氧化物歧化酶具有重要的生理学作用,基因工程改造后的缺乏该酶的小鼠会患上严重的疾病。例如,缺乏SOD2的小鼠在出生后数天死于严重的氧化应激;[10] 缺乏SOD1的小鼠具有广泛的病理特征,包括肝细胞癌(hepatocellular carcinoma)[11]、与年纪相关的肌肉的质量加速减少[12]、白内障提早发生以及寿命减少;缺乏SOD3的小鼠不表现出任何明显的缺陷并具有正常的寿命,然而它们更易于发生高氧损伤。[13] 敲除任何一种超氧化物歧化酶的小鼠更易于死于超氧化物生产的药剂,如百草枯(paraquat)和敌草快(diquat)。
缺少SOD1的果蝇具有显著缩短的寿命,而缺少SOD2的果蝇则在出生前就死去。在线虫中敲除SOD不导致严重的生理学紊乱。SOD1的敲除或缺失突变对于酿酒酵母在无氧环境生长非常有害,并导致后二峰生长期(post-diauxic lifespan)的显著缩短;而SOD2的敲除或缺失突变则会引起生长抑制并同样减少后二峰生长期。
对于原核生物(包括大肠杆菌)中的SOD的缺失突变研究发现,缺少周质空间中的CuZnSOD会导致其毒性损失,因此SOD可能是新抗菌药物的潜在靶标。
用途
参考文献
- PDB 1VAR; Borgstahl GE, Parge HE, Hickey MJ, Johnson MJ, Boissinot M, Hallewell RA, Lepock JR, Cabelli DE, Tainer JA. . Biochemistry. April 1996, 35 (14): 4287–97. PMID 8605177. doi:10.1021/bi951892w.
- PDB 1SDY; Djinović K, Gatti G, Coda A, Antolini L, Pelosi G, Desideri A, Falconi M, Marmocchi F, Rolilio G, Bolognesi M. . Acta Crystallogr., B. December 1991, 47 (6): 918–27. PMID 1772629. doi:10.1107/S0108768191004949.
- Borgstahl GE, Parge HE, Hickey MJ, Beyer WF, Hallewell RA, Tainer JA. . Cell. October 1992, 71 (1): 107–18. PMID 1394426. doi:10.1016/0092-8674(92)90270-M.
- Wuerges J, Lee JW, Yim YI, Yim HS, Kang SO, Djinovic Carugo K. . Proc. Natl. Acad. Sci. U.S.A. June 2004, 101 (23): 8569–74. PMC 423235 . PMID 15173586. doi:10.1073/pnas.0308514101.
- (英文)Corpas FJ, Barroso JB, del Río LA. . Trends Plant Sci. 2001, 6 (4): 145–50.
- (英文)Corpas FJ; et al. . Plant Cell Physio. 2006, 47 (7): 984–94.
- PDB 3CQQ; Cao X, Antonyuk SV, Seetharaman SV, Whitson LJ, Taylor AB, Holloway SP, Strange RW, Doucette PA, Valentine JS, Tiwari A, Hayward LJ, Padua S, Cohlberg JA, Hasnain SS, Hart PJ. . J. Biol. Chem. June 2008, 283 (23): 16169–77. PMC 2414278 . PMID 18378676. doi:10.1074/jbc.M801522200.
- PDB 2JLP; Antonyuk SV, Strange RW, Marklund SL, Hasnain SS. . J. Mol. Biol. May 2009, 388 (2): 310–26. PMID 19289127. doi:10.1016/j.jmb.2009.03.026.
- Loeffler Petrides Heinrich. . 8th Edition. 2007: 123.
- (英文)Li, Y.; et al. . Nat. Genet. 1995, 11: 376–381. doi:10.1038/ng1295-376.
- (英文)Elchuri, S.; et al. . Oncogene. 2005, 24: 367–380. doi:10.1038/sj.onc.1208207.
- (英文)Muller, F. L.; et al. . Free Radic. Biol. Med. 2006, 40: 1993–2004. doi:10.1016/j.freeradbiomed.2006.01.036.
- (英文)Sentman, M. L.; et al. . J. Biol. Chem. 2006, 281: 6904–6909. doi:10.1074/jbc.M510764200.
- (英文)Conwit, Robin A. . Journal of the Neurological Sciences. December 2006, 251 (1–2): 1–2. ISSN 0022-510X. doi:10.1016/j.jns.2006.07.009.
- (英文)Al-Chalabi, Ammar; P. Nigel Leigh. . Current Opinion in Neurology. August 2000, 13 (4): 397–405. ISSN 1473-6551.
- (英文)Groner, Y.; et al. . Biomed Pharmacother. 1994, 48: 231–40. PMID 7999984. doi:10.1016/0753-3322(94)90138-4.
- (英文)Seguí J, Gironella M, Sans M; et al. . J. Leukoc. Biol. September 2004, 76 (3): 537–44. PMID 15197232. doi:10.1189/jlb.0304196. (原始内容存档于2009年2月9日).
- (英文)Campana, F. (PDF). J. Cell. Mol. Med. 2004, 8 (1): 109–116. PMID 15090266. doi:10.1111/j.1582-4934.2004.tb00265.x. (原始内容 (available free)存档于2008-12-05).
- (英文)Vozenin-Brotons MC; Sivan V, Gault N, Renard C, Geffrotin C, Delanian S, Lefaix JL, Martin M. . Free Radic Biol Med (Elsevier). 2001, 30 (1): 30–42. PMID 11134893. doi:10.1016/S0891-5849(00)00431-7.
外部链接
- (英文)OMIM 105400 (ALS)
- (英文)ALS在线数据库 (页面存档备份,存于)
- 化工词典中关于SOD的信息 (页面存档备份,存于)
- 新华网上关于超氧化物歧化酶的简介
- (英文)SOD简介 (页面存档备份,存于)
- (英文)有关SOD1和SOD2在衰老中的作用 (页面存档备份,存于)
- (英文)SOD和氧化压力通路图 (页面存档备份,存于)
- (英文)SOD的研究史
- (英文)JM McCord谈论SOD的发现历史 (页面存档备份,存于)
- 超氧化物歧化酶(SOD)检测的临床意义与应用