放缩法
放缩法
是通过舍去或添加一些项来构造
不等式
的一种方法。
[参 1]
例子
求证
log
2
3
+
log
3
2
<
2
+
1
{\displaystyle {\sqrt {\log _{2}3}}+{\sqrt {\log _{3}2}}<{\sqrt {2}}+1}
[注 1]
log
2
3
+
log
3
2
<
log
2
4
+
log
3
3
=
2
+
1
{\displaystyle {\sqrt {\log _{2}3}}+{\sqrt {\log _{3}2}}<{\sqrt {\log _{2}4}}+{\sqrt {\log _{3}3}}={\sqrt {2}}+1}
[参 2]
已知a,b,c,d为
正数
,求证
1
<
a
a
+
b
+
d
+
b
a
+
b
+
c
+
c
b
+
c
+
d
+
d
a
+
c
+
d
<
2
{\displaystyle 1<{\frac {a}{a+b+d}}+{\frac {b}{a+b+c}}+{\frac {c}{b+c+d}}+{\frac {d}{a+c+d}}<2}
a
a
+
b
+
d
+
b
a
+
b
+
c
+
c
b
+
c
+
d
+
d
a
+
c
+
d
>
a
a
+
b
+
c
+
d
+
b
a
+
b
+
c
+
d
+
c
a
+
b
+
c
+
d
+
d
a
+
b
+
c
+
d
=
1
{\displaystyle {\frac {a}{a+b+d}}+{\frac {b}{a+b+c}}+{\frac {c}{b+c+d}}+{\frac {d}{a+c+d}}>{\frac {a}{a+b+c+d}}+{\frac {b}{a+b+c+d}}+{\frac {c}{a+b+c+d}}+{\frac {d}{a+b+c+d}}=1}
a
a
+
b
+
d
+
b
a
+
b
+
c
+
c
b
+
c
+
d
+
d
a
+
c
+
d
<
a
a
+
b
+
b
a
+
b
+
c
c
+
d
+
d
c
+
d
=
2
{\displaystyle {\frac {a}{a+b+d}}+{\frac {b}{a+b+c}}+{\frac {c}{b+c+d}}+{\frac {d}{a+c+d}}<{\frac {a}{a+b}}+{\frac {b}{a+b}}+{\frac {c}{c+d}}+{\frac {d}{c+d}}=2}
[参 3]
求证
∑
k
=
1
n
1
k
2
<
2
−
1
n
{\displaystyle \sum _{k=1}^{n}{\frac {1}{k^{2}}}<2-{\frac {1}{n}}}
∑
k
=
1
n
1
k
2
<
1
+
∑
k
=
2
n
1
k
(
k
−
1
)
=
1
+
∑
k
=
2
n
1
k
−
1
−
1
k
=
2
−
1
n
{\displaystyle \sum _{k=1}^{n}{\frac {1}{k^{2}}}<1+\sum _{k=2}^{n}{\frac {1}{k(k-1)}}=1+\sum _{k=2}^{n}{\frac {1}{k-1}}-{\frac {1}{k}}=2-{\frac {1}{n}}}
[注 2]
[参 2]
设
n
∈
N
+
{\displaystyle n\in N^{+}}
,求证
n
(
n
+
1
)
2
<
∑
k
=
1
n
k
(
k
+
1
)
<
(
n
+
1
)
2
2
{\displaystyle {\frac {n(n+1)}{2}}<\sum _{k=1}^{n}{\sqrt {k(k+1)}}<{\frac {(n+1)^{2}}{2}}}
k
=
k
2
<
k
(
k
+
1
)
<
k
2
+
k
+
1
4
=
k
+
1
2
{\displaystyle k={\sqrt {k^{2}}}<{\sqrt {k(k+1)}}<{\sqrt {k^{2}+k+{\frac {1}{4}}}}=k+{\frac {1}{2}}}
n
(
n
+
1
)
2
=
∑
k
=
1
n
k
<
∑
k
=
1
n
k
(
k
+
1
)
<
∑
k
=
1
n
(
k
+
1
2
)
=
n
2
+
2
n
2
<
(
n
+
1
)
2
2
{\displaystyle {\frac {n(n+1)}{2}}=\sum _{k=1}^{n}k<\sum _{k=1}^{n}{\sqrt {k(k+1)}}<\sum _{k=1}^{n}(k+{\frac {1}{2}})={\frac {n^{2}+2n}{2}}<{\frac {(n+1)^{2}}{2}}}
[注 3]
[参 3]
设a,b,c为
直角三角形
的三边,c为
斜边
,求证:
a
n
+
b
n
<
c
n
(
n
>
2
)
{\displaystyle a^{n}+b^{n}<c^{n}(n>2)}
a
n
+
b
n
=
a
2
a
n
−
2
+
b
2
b
n
−
2
<
a
2
c
n
−
2
+
b
2
c
n
−
2
=
c
n
(
n
>
2
)
{\displaystyle a^{n}+b^{n}=a^{2}a^{n-2}+b^{2}b^{n-2}<a^{2}c^{n-2}+b^{2}c^{n-2}=c^{n}(n>2)}
[注 4]
[参 2]
备注
log为
对数
函数
这里用了
裂项和
的求和方法
这里用了
等幂求和
的求和方法
这里用了
勾股定理
参考资料
. (
原始内容
存档于2014-07-26).
董卫平.
. 数学大世界(高中). 2011, (2)
[
2015-09-20
]
. (原始内容
存档
于2016-03-04).
.
[
2014-07-16
]
. (原始内容
存档
于2014-07-20).
This article is issued from
Wikipedia
. The text is licensed under
Creative Commons - Attribution - Sharealike
. Additional terms may apply for the media files.