诺特群

群论中,诺特群(英語:)是指使得其子群满足升链条件

定义

是一个。那么以下条件等价,满足此条件的群称为诺特群

性质

关于诸运算的封闭性

诺特群的子群以及商群是诺特群。诺特群被诺特群的扩张仍是诺特群。

诺特可解群

对于群,以下条件等价。[1]:165

  • 可解群,并且是诺特群。
  • 存在的子群列,使得对于每个循环群

满足这个条件的群称为多循环群

对于幂零群,以下条件等价。[1]:145

  • 是诺特群。
  • 有限生成群

所有有限群都是诺特群。所有有限生成幂零群多循环群从而是诺特群。[1]:145

多循环群有限群扩张是诺特群。其逆不成立,也就是说一个诺特群可能不具有指数有限的多循环正规子群。但这样的反例的构造是相当复杂的。

历史

诺特群的名称取自埃米·诺特。不是多循环群有限群扩张的诺特群由亚历山大·奥利尚斯基在一篇1979年论文中首次构造。[2][3]

参考文献

  1. Robinson, Derek S. . Illinois Journal of Mathematics. 1965, 9: 144–168. ISSN 0019-2082. MR 0170953. Zbl 0135.04805 (英语).
  2. Ольшанский, А. Ю. . Известия Академии наук СССР. Серия математическая. 1979, 43 (6): 1328–1393 [2022-12-20]. ISSN 0373-2436. MR 0567039. Zbl 0431.20027. doi:10.1070/IM1980v015n03ABEH001268. (原始内容存档于2022-12-20) (俄语).
  3. Ol'šanskiĭ, A. J. . Mathematics of the USSR-Izvestiya. 1980, 15 (3): 531–588 [2022-12-20]. ISSN 0025-5726. MR 0567039. Zbl 0431.20027. doi:10.1070/IM1980v015n03ABEH001268. (原始内容存档于2022-12-20) (英语).

外部链接

  • Hazewinkel, Michiel (编), , , Springer, 2001, ISBN 978-1-55608-010-4
  • Hazewinkel, Michiel (编), , , Springer, 2001, ISBN 978-1-55608-010-4
  • . Groupprops. [2022-12-20]. (原始内容存档于2022-12-06) (英语).
  • . Groupprops. [2022-12-20]. (原始内容存档于2022-12-20) (英语).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.