花椰菜嵌紋病毒
花椰菜嵌紋病毒(Cauliflower mosaic virus,簡稱CaMV)是花椰菜病毒科花椰菜病毒屬的一種病毒,屬DNA逆轉錄病毒[1],此病毒可感染十字花科的植物,有些毒株(D4與W260)還可感染茄科曼陀羅屬或菸草屬的物種,以桃蚜等近30種蚜蟲傳播[2][3],因此避免蚜蟲與幼苗接觸為防治此病毒感染的有效措施[3]。
花椰菜嵌紋病毒 | |
---|---|
電子顯微鏡下的花椰菜嵌紋病毒 | |
病毒分類 | |
(未分级): | 病毒 Virus |
域: | 核糖病毒域 Riboviria |
界: | 副核糖病毒界 Pararnavirae |
门: | 酶病毒门 Artverviricota |
纲: | 酶病毒纲 Revtraviricetes |
目: | 逆转录病毒目 Ortervirales |
科: | 花椰菜病毒科 Caulimoviridae |
属: | 花椰菜病毒屬 Caulimovirus |
种: | 花椰菜嵌紋病毒 Cauliflower mosaic virus |
花椰菜嵌紋病毒感染的植株症狀包括植株葉片出現嵌紋、葉片組織壞死、植株矮化變形等,因病毒株、植株生態型與環境因子而異[4]。此病毒為溫帶地區普遍的植物病毒,對十字花科作物造成相當的經濟損失,有報導指有10%市售的白菜與花椰菜均被此病毒感染[3]。
病毒學
花椰菜嵌紋病毒的顆粒為正二十面體,直徑約52奈米[5][6];基因組為環狀雙股DNA,長約8kb,可轉錄產生35S與19S兩種mRNA,前者包含6至8個開放閱讀框[7][8][9],後者則只有1個開放閱讀框(ORF VI),編碼TAV蛋白。35S RNA轉譯起始時會發生核糖體分流,即核糖體跳過前方二級結構,直接跳至開放閱讀框的起始密碼子開始轉譯[10];另外TAV蛋白可與轉譯中的核糖體和eIF3結合,核糖體轉譯完35S RNA上的一個開放閱讀框後,再度開始轉譯下一個開放閱讀框[11]。
許多易感植物可以miRNA和siRNA等小RNA與AGO等蛋白結合,抑制此病毒的感染,病毒基因組前端的非編碼區的RNA則可被Dicer切割產生大量小RNA,可與植物體抗病毒的miRNA和siRNA競爭結合AGO蛋白,而前端非編碼區衍生的小RNA雖也可引導AGO蛋白至病毒35S RNA的對應區域,卻因該區二級結構複雜而難以結合,進而達成抑制宿主抗病毒反應的效果[12]。
應用
許多轉基因作物皆是使用花椰菜嵌紋病毒35S RNA的啟動子來表現外加的基因,有人擔憂其與人類DNA重組後可能影響人體基因表現,又因此啟動子序列與ORF VI重疊,也有人質疑其可能在作物中表現病毒蛋白[13],但實驗結果顯示病毒啟動子與人類DNA重組在正常條件下發生的機率極低,且此啟動子無法在哺乳動物細胞中表現蛋白[3]。
參考文獻
- Pringle, CR. . Arch Virol. 1999, 144 (2): 421–9. PMC 7086988 . PMID 10470265. doi:10.1007/s007050050515.
- Brault, V.; Uzest, M.; Monsion, B.; Jacquot, E.; Blanc, S. . Comptes Rendus Biologies. 2010, 333 (6–7): 524–38. PMID 20541164. doi:10.1016/j.crvi.2010.04.001.
- Aurélie Bak, Joanne B. Emerson. . Front. Sustain. Food Syst. 2020 [2021-12-06]. doi:10.3389/fsufs.2020.00021. (原始内容存档于2022-06-15).
- Khelifa, M.; Massé, D.; Blanc, S.; Drucker, M. . Virology. 2010, 396 (2): 238–45. PMID 19913268. doi:10.1016/j.virol.2009.09.032 .
- Cheng, RH.; Olson, NH.; Baker, TS. . Virology. Feb 1992, 186 (2): 655–68. PMC 4167691 . PMID 1733107. doi:10.1016/0042-6822(92)90032-k.
- Haas, M.; Bureau, M.; Geldreich, A.; Yot, P.; Keller, M. . Mol Plant Pathol. Nov 2002, 3 (6): 419–29. PMID 20569349. doi:10.1046/j.1364-3703.2002.00136.x.
- Fütterer, J.; Gordon, K.; Bonneville, JM.; Sanfaçon, H.; Pisan, B.; Penswick, J.; Hohn, T. . Nucleic Acids Res. Sep 1988, 16 (17): 8377–90. PMC 338565 . PMID 3419922. doi:10.1093/nar/16.17.8377.
- Pooggin, MM.; Hohn, T.; Fütterer, J. . J Virol. May 1998, 72 (5): 4157–69. PMC 109645 . PMID 9557705. doi:10.1128/JVI.72.5.4157-4169.1998.
- Hemmings-Mieszczak, M.; Steger, G.; Hohn, T. . J Mol Biol. Apr 1997, 267 (5): 1075–88. PMID 9150397. doi:10.1006/jmbi.1997.0929.
- Pooggin MM, Futterer J, Skryabin KG, Hohn T. . Proc Natl Acad Sci U S A. 2001, 98 (3): 886–91. PMC 14679 . PMID 11158565. doi:10.1073/pnas.98.3.886.
- Park, HS.; Himmelbach, A.; Browning, KS.; Hohn, T.; Ryabova, LA. . Cell. 2001, 106 (6): 723–33. PMID 11572778. S2CID 14384952. doi:10.1016/S0092-8674(01)00487-1 .
- Blevins T, Rajeswaran R, Aregger M, Borah BK, Schepetilnikov M, Baerlocher L; et al. . Nucleic Acids Res. 2011, 39 (12): 5003–14. PMC 3130284 . PMID 21378120. doi:10.1093/nar/gkr119.
- Podevin, N.; du Jardin, P. . GM Crops Food. 2012, 3 (4): 296–300. PMID 22892689. doi:10.4161/gmcr.21406 .