羅默測定光速

羅默測定光速指的是丹麥天文學者奧勒·羅默於1676年從測量實驗發現光波以有限速度傳播。羅默那時就職於巴黎天文台

奧勒·羅默 (1644–1710)的版畫像。

羅默估計,傳播等同於地球太陽公轉軌道直徑的距離,光波需要大約22分鐘時間,這大約等於220,000每秒(140,000英里每秒),比實際數值低了26%。這可能是因為木星軌道根數的錯誤造成的誤差,使羅默認為木星比實際更接近太陽。羅默怎樣計算出這數值,詳盡細節可惜已不存在。

在那年代,羅默的理論頗具爭議性,他無法讓那時在巴黎天文台擔任主任的乔瓦尼·卡西尼完全接受他的理論。但是,他的理論很快地贏得了像克里斯蒂安·惠更斯艾薩克·牛頓等等許多自然哲學者的支持。後來,於1729年,英國天文學者詹姆斯·布拉德雷對於恆星視差的解釋,確認了羅默的觀測結果的正確性。

木衛一蝕

這是按照羅默的1676年繪圖重新繪製的版本。在羅默論文裏,他比較木衛一軌道週期的兩個時間間隔:一個是地球在朝向木星運行時的木衛一軌道週期(有向弧FG的方向),另一個是地球背向木星運行時的木衛一軌道週期(有向弧LK的方向)。

伽利略·伽利萊於1610年1月發現的四個木星衛星中,木衛一最靠近木星。羅默與卡西尼稱它為「木星的第一顆衛星」。木衛一每42½小時繞木星公轉一次,它的軌道平面與木星繞太陽的軌道平面非常接近,因此,它一部分軌道是在太陽照射木星的陰影裏,每一次公轉都會出現行星掩星,稱此現象為「木衛一蝕」。

太陽(點A)照射於木星(點B)會產生陰影(範圍從木衛一軌道的點C至點D)。從地球觀察,當木衛一蝕發生之時(點C),木衛一會突然消失,運行進入木星陰影,稱這現象為「消蹤」;當木衛一蝕結束之時(點D),木衛一會突然出現,運行離開木星陰影,稱這現象為「現蹤」。

地球的公轉軌道包含了點E、F、G、H、L、K。在任意一次木衛一蝕裏,消蹤與現蹤不能夠從地球都觀察得到,因為其中一種現象必會被木星掩蔽。在衝日點(點H,地球在太陽與木星連線之間),消蹤與現蹤都會被木星掩蔽。在地球位置點L、K都可以觀察到木衛一現蹤(點D)。由於點L比點K接近點D,光波需要更多傳播時間才能抵達點K。類似地,在地球位置點F、G都可以觀察到木衛一消蹤(點C)。由於點G比點F接近點C,光波需要較少傳播時間才能抵達點G。

在衝日點之後大約有四個月,可以觀察到木衛一從木星陰影現蹤(從點L至點K);在衝日點之前大約有四個月,可以觀察到木衛一消蹤進入木星陰影(從點F至點G)。在合日點(點E,太陽在地球與木星連線之間)前後,大約有五至六個月無法觀察到木衛一蝕,因為木星離太陽很近。甚至在衝日點前後幾個月,從地球表面有些地點,都有可能無法觀察到整個木衛一蝕過程──對於某些地點,木衛一蝕可能會發生於日間,或者當木衛一蝕發生時,木星正好低於地平線,被地球本身遮蔽。

天文觀察

羅默的手稿,寫於1678年月之後某日,於1913年被重新發現。木衛一的消蹤或現蹤時間寫在圖像的右手邊,這應該是摺紙的第一頁。

由於1728年哥本哈根大火(Copenhagen Fire of 1728),羅默的單本論文大部分都被摧毀,碩果僅存的是一篇手稿,內中有約60筆從1668年至1678年觀察木衛一蝕的數據資料。[1]特別值得注意的是,內中紀載了在分別在兩個衝日點1672年3月2日、1673年4月2日兩邊的兩組觀察數據。在一封於1677年9月30日寫給惠更斯的信裏,羅默表示,這些從1671年至73年的觀察數據是運算的主要依據。[2]

存留下來的手稿是在最後一筆天文觀察紀錄(日期為1月6日)之後,才撰寫完成,因此是在羅默寫信給惠更斯之後。羅默似乎在蒐集關於伽利略衛星的被掩蔽數據,並且紀錄於一本備忘錄裡。這或許是因為他正準備於1681年返回丹麥。這手稿也紀錄了在衝日點1676年7月8日兩邊的觀察數據,這是羅默發表結果的依據。

初步報告

1676年8月22日,[註 1]卡西尼向巴黎的皇家科學院宣佈,他將會改變他計算木衛一蝕所使用的方法。他可能也表示出原因:[註 2]

這第二個不等式似乎是因為光波需要一段時間從衛星傳播至我們;光波似乎需要10至11分鐘來傳播等同於地球太陽公轉軌道半徑的距離。[3]

最為關鍵地,卡西尼預測,1676年11月16日的木衛一蝕的現蹤時間會比先前計算方法得到的結果早10分鐘。雖然並沒有任何關於木衛一蝕11月16日現蹤,只有11月9日現蹤的觀察數據紀錄,羅默用這證據於11月22日解釋他的新算法給皇家科學院的學者。[4]

皇家科學院的原本會議紀錄已不存在,但是羅默發表紀錄已被刊登於12月7日《學者期刊》(Journal des sçavans)的新聞報告。[5][6]這篇報告又被翻譯與發表在1677年7月25日的《自然科學會報》。[7]

羅默的推理

數量級分析

羅默用數量級分析演示,光波傳播地球直徑距離所需時間超小於一秒鐘,這速度極為快捷。點L是木星的第二方照(quadrature),從點L(地球位置)觀察,木星與太陽的夾角為90°。[註 3]羅默假定觀察者會在點L看到現蹤,而且42½小時之後還會緊接地看到下一次現蹤。在這42½小時,地球已經運行離開木星更遠,差距為距離LK,根據羅默,這距離是地球直徑的210倍。[註 4]假若光波傳播速度為1地球直徑每秒,則需要3½分鐘傳播距離LK。假若木衛一繞木星公轉的週期等於在點L現蹤與在點K現蹤的時間間隔,這數值應該比舊星曆表數值慢3½分鐘。

羅默又應用同樣邏輯來處理地球位於第一方照(點G)附近觀察到的消蹤數據,在點G附近,地球的運行方樣主要是面向木星。在點F消蹤與在點G消蹤的時間間隔應該比木衛一繞木星公轉的週期(舊星曆表數值)快3½分鐘。因此,第一方照與第二方照之間測量數值的差額應為7分鐘。但是,從天文實驗數據並沒有發現有任何可分辨的差別。因此,羅默斷言,光速應該超大於1地球直徑每秒。[5][6]

累積效應

羅默猜想,假若常期不停測量,有限光速所造成的任何效應應會越變越大,他發表給皇家科學院的就是這種累積效應。羅默從1672年春天起觀察獲得的數據,可以顯示出這效應。

1672年3月2日,地球位於衝日點H。最初兩次現蹤觀察數據的日期分別為3月7日(時間07:58:25)、3月14日(時間09:52:30)。在這兩次觀察之間,木衛一完成了4個公轉,軌道週期平均為42小時 28分31¼秒。

在這一系列的觀察數據裏,最後一次現蹤數據的日期為4月29日(時間10:30:06)。至此為止,木衛一已完成了30個公轉,軌道週期平均為42小時 29分3秒。兩者之間的差額似乎很微小,只有32秒,但這意味著4月29日的現蹤時間比舊星曆表數值慢了15分鐘。唯一別種解釋就是3月7日、3月14日的觀察數據有誤差2分鐘。

預測

羅默從未發表關於他的計算光波傳播速度的正式論述,這可能是因為卡西尼與讓·皮卡(Jean Picard)反對他的點子。[註 5]但是,從他發表於《學者期刊》的新聞報告和卡西尼的1676年8月22日宣佈,可以推理出這計算方法的大概內涵。

卡西尼宣佈新星曆表數值將會

包括在內,由於地球軌道偏心率所引起的日長不等、太陽的實際運動、木星的偏心運動(由於木星軌道偏心率所引起的不等)、新發現的不等(由於光波傳播的有限速度)。[3]

因此,卡西尼與羅默似乎是用圓形軌道近似來計算每一個蝕的時間,然後接連做三次修正來估算在巴黎觀察到蝕的時間。

卡西尼列出的三種不等(或不規則)並不是那時只知道的幾種不等,但這三種不等都可以計算與修正。木衛一的軌道也有點不規則,因為與木衛二木衛三之間的軌道共振,但是經過一個世紀,這現象仍舊沒有被完全解釋清楚。卡西尼與同事天文學者只能夠週期性的修正木衛一蝕表,納入計算木衛一的不規則軌道。最合理的修正時間是在衝日點,在這點,木星最接近地球,最容易被觀察。

大約於1676年7月8日左右,地球又運行至衝日點。在羅默的備忘錄裡,在這日子與卡西尼宣佈的日子之間,列有兩筆現蹤的觀察紀錄,即8月7日(時間09:44:50)、8月14日(時間11:45:55)。[8]有了這些數據,知道木衛一的軌道週期,卡西尼就可以計算稍後四至五個月的木衛一蝕發生時間。

實施羅默修正的下一個步驟,對於每次木衛一蝕,必須分別計算地球與木星在其各自軌道裏的運行位置。當製備新的天文學星曆儀的行星位置表時,這種坐標變換是很平常的工作;這等於找到每次可觀察到的木衛一蝕的點L(或點K)位置。

最後,地球與木星之間距離可用標準三角公式計算,特別是用餘弦定理──知道三角形的兩個邊(太陽與地球之間距離、太陽與木星之間距離)與一個角(地球與木星對於頂點太陽的夾角),就可以計算出地球與木星之間距離。在那時代,天文學者並不清楚太陽與地球之間的距離,只能假定為固定值a,應用克卜勒第三定律,可以計算出太陽與木星之間距離對於固定值a的倍數。

這模型只存留一個可變參數:光波傳播固定值a(地球軌道半徑)所需時間。從1671年至1673年,羅默大約有三十筆木衛一蝕觀察數據。他用這些數據計算出最佳擬合為11分鐘。採用這數值,與1676年8月相比較,他計算出1676年11月光波從木星傳播到地球所需要的額外時間為10分鐘。

紀念

2016年12月7日,Google更改其首頁的Doodle,以紀念首次測定光速340周年[9]

註釋

  1. 有些文獻錯誤認為宣佈的那一年是在1685年或甚至1684的。Bobis and Lequeux (2008)已令人信服地演示出正確宣佈日期為1676年8月22日。宣佈者為卡西尼,而不是羅默。
  2. 原本皇家科學院會議紀錄已流失。引述是從一本拉丁文未被發表的手稿,儲存於巴黎天文台圖書館,可能是由天文學者約瑟夫-尼古拉斯·德利爾在1738年之前撰寫。請參閱Bobis and Lequeux (2008),這本書內有這手稿的摹寫。
  3. 雖然新聞報告沒有明顯指出,選擇方照點L並不是偶然。在這點附近,地球的運行方向主要是背向木星,因此,對於光波傳播時間,預期會觀察到最大效應。
  4. 羅默估計的210倍比實際倍數低很多,實際倍數平均為322倍。羅默似乎認為木星比實際更接近太陽。
  5. 皇家科學院曾經指示羅默與他的同事共同發表一篇論文。

參考來源

引用
  1. Meyer 1915
  2. Rømer 1677
  3. Bobis & Lequeux 2008
  4. Teuber 2004
  5. (PDF), Journal des Sçavans, 1676: 233–36 [2013-07-06], (原始内容 (PDF)存档于2011-07-21)
  6. van Helden, Albert. . Journal for the History of Astronomy. 1983-06, 14 (2). Bibcode:1983JHA....14..137V. ISSN 0021-8286. doi:10.1177/002182868301400206 (英语).
  7. . Philosophical Transactions of the Royal Society of London. 1677-06-25, 12 (136) [2022-06-13]. Bibcode:1677RSPT...12..893.. ISSN 0261-0523. doi:10.1098/rstl.1677.0024. (原始内容存档于2022-06-18) (英语).
  8. Saito 2005
  9. . [2016-12-07]. (原始内容存档于2017-09-09).
文獻
  • Bobis, Laurence; Lequeux, James, (PDF), J. Astron. Hist. Heritage, 2008, 11 (2): 97–105, (原始内容 (PDF)存档于2009-07-17)
  • Bradley, James, , Philosophical Transactions of the Royal Society of London, 1729, 35: 637–60 [2013-07-04], (原始内容存档于2016-02-15)
  • . Isis. 1940-04, 31 (2) [2022-06-14]. ISSN 0021-1753. doi:10.1086/347594. (原始内容存档于2022-04-20) (英语).
  • Daukantas, Patricia, , Optics & Photonics News, July 2009: 42–47 [2013-07-04], (原始内容存档于2012-02-20)
  • French, A. P., , Roche, John (编), , CRC Press: 120–23, 1990, ISBN 0-85274-001-8
  • Godin, Louis; Fontenelle, Bernard de (编), , Paris: Compagnie des libraires: 112–15, 140–41, 1729–34 [2013-07-04], (原始内容存档于2019-06-14) (法文)
  • Huygens, Christiaan, , Bosscha, J. (编), , The Hague: Martinus Nijhoff: 30–31, 16 September 1677 (1899) [2013-07-04], (原始内容存档于2020-10-03) (拉丁文)
  • Huygens, Christiaan, , Bosscha, J. (编), , The Hague: Martinus Nijhoff: 36–37, 14 October 1677 (1899) [2013-07-04], (原始内容存档于2017-09-09) (法文)
  • Huygens, Christiaan. . Pierre van der Aa. 1690 [2022-06-14]. (原始内容存档于2022-06-14) (法语).
  • Meyer, Kirstine, , Det Kongelige Danske Videnskabernes Selskabs Skrifter, 7. Række, naturvidenskabelig og mathematisk Afdeling, 1915, XII: 3 (丹麦文)
  • Newton, Isaac, , , London: Sam. Smith. and Benj. Walford, 1704 [2013-07-04], (原始内容存档于2016-02-15)
  • Rømer, Ole, , Bosscha, J. (编), , The Hague: Martinus Nijhoff: 32–35, 30 September 1677 (1899) [2013-07-04], (原始内容存档于2017-09-09) (拉丁文)
  • Saito, Yoshio, , AAPPS Bulletin, 2005, 15 (3): 9–17
  • Shea, James H. . American Journal of Physics. 1998-07, 66 (7) [2022-06-14]. Bibcode:1998AmJPh..66..561S. ISSN 0002-9505. doi:10.1119/1.19020. (原始内容存档于2022-04-26) (英语).
  • Teuber, Jan, , Friedrichsen, Per; Henningsen, Ole; Olsen, Olaf; Thykier, Claus; Tortzen, Chr. Gorm (编), , Copenhagen: Gads Forlag: 218, 2004, ISBN 87-12-04139-4 (丹麦文)
  • Wróblewski, Andrzej. . American Journal of Physics. 1985-07, 53 (7) [2022-06-14]. Bibcode:1985AmJPh..53..620W. ISSN 0002-9505. doi:10.1119/1.14270. (原始内容存档于2022-06-30) (英语).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.