笛卡儿叶形线
曲线的特征
切线的方程
利用隐函数的求导法则,我们可以求出y':
利用直线的点斜式方程,我们可以求出点处的切线方程:
水平和竖直切线
当时,笛卡儿叶形线的切线是水平的。所以:
当时,笛卡儿叶形线的切线是竖直的。所以:
这可以通过曲线的对称来解释。我们可以看到,曲线有两条水平切线和两条竖直切线。笛卡儿叶形线关于对称,所以如果水平切线有坐标的话,则一定有一个对应的竖直切线,坐标为。
参考文献
- Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 218, 1987.
- Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 77-82, 1997.
- Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 106-109, 1972.
- MacTutor History of Mathematics Archive. "Folium of Descartes." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Foliumd.html (页面存档备份,存于).
- Stroeker, R. J. "Brocard Points, Circulant Matrices, and Descartes' Folium." Math. Mag. 61, 172-187, 1988.
- Yates, R. C. "Folium of Descartes." In A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 98-99, 1952.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.