數學符號
數學符號(英語:)不只被使用於數學裡,更包含於物理科學、工程及經濟學等領域內。有些數學符號在生活中很常見,例如數字1及2、二元運算、+等,儘管它們的實際定義可能並不顯淺;隨著數學觀念的發展,我們需要更多的符號以避免冗長的定義陳述,或是簡潔地表示某些概念。一些可能出現在教科書上的符號有正弦函數、極限和微分;也有更為基本、然而抽象的符號,比如函數、等式及變數等等。
釋義
數學符號是一書寫系統,用於表示數學內的概念,是一种含义高度概括、形体高度浓缩的抽象的科学语言。
數學符號的一個特點為對數學概念的系統性依附[註 1]。
當談及數學符號時,總是在某個理論框架的意義下討論它。要注意的是,同一個符號可以在不同的理論中被使用,且有著不同的意義。[註 2]
表示式是能被賦予某些意義的符號串列。[註 3]有需要的話,我們會在表示式中加入括號,以標明優先運算的部分。例如算式 中,是先把括號中的數字和加起來,得出,再把乘以。
一般來說,人們都由左至右寫表示式,也從左至右的方向闡述式子,但電腦讀入和運行表示式的方法則有別於此。電腦科學中,這些運算規則是由編譯器執行的。[註 4]
現代數學要求數學符號有精確語意,因為使用含糊不清的符號是無法給出正式的數學證明的。有了準確的符號,才能嚴格地推導出命題。命題亦即由一些符號以合乎規格的方式連結起來的表示式。這些數學命題通常是陳述某些數學物件的性質和關係[註 5]。
透過一公理系統可推導出命題,但僅看命題中的符號,是無法理解整個式子的意義的。除了推理,我們還可把符號設想為那些被標示的數學物件,如此便得出一個模型,在該模型中命題的意義有一個詮釋。如此我們可以透過直覺來了解符號或數學物件的意義,而同時這種理解又建基於嚴格的推理。當我們想要探究一個數學物件的特性,我們可以用描述法,將其特性形式化地一一列舉。[註 6]
歷史
數算
一般相信數學標記最少在50,000年前開始出現,以協助數算。除了數手指,早期用作數算的工具還有石塊、樹枝、骨頭、黏土、木雕、繩結。 0的出現是數學中最重要的發展之一。
解析幾何
初期幾何的數學觀念未借用數字的概念。事實上,由自然數到分數,再由分數建構出連續的實數,這個發展過程經歷了超過一個世紀的時間。直至笛卡尔發展了解析幾何,幾何裡才常常用到數字和符號。一些符號開始出現在幾何證明的正式發表裡,用以簡略地表示數學概念。除此之外,幾何定理和證明的結構也大大地影響了非幾何的領域,比如是牛頓所著的《自然哲學的數學原理》。
計算機械化
隨著布林代數和進位制的出現,透過簡單電路作計算這一方法成為可能。最初是以物理手段,例如用齒輪和桿,通過旋轉和平移表示狀態的變動。再之後是以電力,通過電壓和電流的轉變來代表某一項量的轉變。到了今天,電腦以規格化的電路來儲存和改變某一項量,除了數字外還能表示圖象、聲音、動作以及指令。
註記
- 例如dy/dx此一概念在微積分中是由極限的定義給出,它的特性是由極限的定義推導出來,在多元函数中不能簡單地視為一般分數,但在一元函数中可以视为微商
- 另見相關概念:主語、邏輯論證、信服、數理邏輯和模型論。
- 例如,若表示式中的符號代表數字和一些四則運算,則此式依一定的運算順序來作運算過程。
- 更多有關表示式的運算,請見電腦科學主題:熱情計算、惰性計算及評估運算子。
- 比如先前所述的數字、形狀、圖像和變化
- 在不同的文本內容中,有時相同的符號或記號被用來指涉不同的概念。所以,要明白一篇關於數學的文字,首要之事是要弄清作者於文中使用的符號究竟定義為何。
- 參見常用的數學符號表
- 約翰·沃利斯也發明了"∞"的寫法
參考資料
- Florian Cajori, A History of Mathematical Notations (1929), 2 volumes. ISBN 0-486-67766-4
外部連結
- Mathematics as a Language at cut-the-knot
- Earliest Uses of Various Mathematical Symbols
- Mathematical ASCII Notation (页面存档备份,存于) how to type math notation in any text editor.