戀臭假單胞菌

恋臭假单胞菌Pseudomonas putida)是一种营腐生的土壤杆菌,属于革兰氏阴性菌,根据16SrRNA基因分析结果归为假单胞菌属(狭义),同其他几个物种一起并入该属下的恋臭假单胞菌组。[1]

戀臭假單胞菌
科学分类 编辑
域: 细菌域 Bacteria
界: 细菌界 Bacteria
门: 變形菌門 Pseudomonadota
纲: γ-變形菌綱 Gammaproteobacteria
目: 假單胞菌目 Pseudomonadales
科: 假单胞菌科 Pseudomonadaceae
属: 假单胞菌属 Pseudomonas
种:
戀臭假單胞菌 P. putida
二名法
Pseudomonas putida
Trevisan, 1889
模式菌株
ATCC 12633

CCUG 12690
CFBP 2066
DSM 291
HAMBI 7
JCM 13063 and 20120
LMG 2257
NBRC 14164
NCAIM B.01634
NCCB 72006 and 68020
NCTC 10936

異名

Bacillus fluorescens putidus" Flügge 1886
Bacillus putidus Trevisan 1889
Pseudomonas eisenbergii Migula 1900
Pseudomonas convexa Chester 1901
Pseudomonas incognita Chester 1901
Pseudomonas ovalis Chester 1901
Pseudomonas rugosa (Wright 1895) Chester 1901
Pseudomonas striata Chester 1901
Pseudomonas mildenbergii Bergey, et al.
Arthrobacter siderocapsulatus Dubinina and Zhdanov 1975
Pseudomonas arvilla O. Hayaishi
Pseudomonas barkeri Rhodes
Pseudomonas cyanogena Hammer

通过对假单胞菌属的所有完整基因组进行系统基因组学测序,人们发现恋臭假单胞菌并不是一个单系演化支,而是包括了多个物种在内的、范围更广的进化群体,即恋臭假单胞菌组。[2]

恋臭假单胞菌(的一个变种)是世界上首个获得专利的生物体,向生物颁发专利的行为引起了一些争议。最终美国最高法院判决这一变种的发明人查克拉巴蒂胜诉,这一史无前例的判决成为美国的判例《戴蒙德诉查克拉巴蒂案》。

恋臭假单胞菌拥有丰富的代谢途径,可以分解甲苯等有机分子[3],应用于生物修复和污染治理中。虽然同属的许多物种也有类似的能力,但恋臭假单胞菌最大的优点是安全无害,而不像绿脓杆菌P. aeruginosa)是潜在的人类病原体。

应用

生物修复

恋臭假单胞菌在生物修复领域有着极为广泛的应用,例如,它可用作土壤接种物修复受到污染的土地。[4] 它还能将难以被生物分解的苯乙烯转化为可被生物分解的聚羟基烷酸酯(PHA),利于泡沫塑料的回收。[5][6]

生物防治

恋臭假单胞菌具有生物防治的潛力,可以抑制瓜果腐霉[7]尖孢镰刀菌[8]等植物病原体的生长。

Oligonucleotide Usage Signatures of the Pseudomonas putida KT2440 Genome

有机合成

恋臭假单胞菌对基因编辑表现出良好的服从性,因此可用于医药、农业领域多种化合物的工业生产。

CBB5和咖啡因

Pseudomonas putida CBB5」这一野生品系可以在纯咖啡因中存活,并将咖啡因分解为二氧化碳[10][11]

參考文獻

  1. Anzai, Y; Kim, H; Park, J Y; Wakabayashi, H; Oyaizu, HYR 2000. . International Journal of Systematic and Evolutionary Microbiology. [2023-02-19]. ISSN 1466-5034. doi:10.1099/00207713-50-4-1563. (原始内容存档于2023-02-19).
  2. Nikolaidis, Marios; Mossialos, Dimitris; Oliver, Stephen G.; Amoutzias, Grigorios D. . Diversity. 2020-08, 12 (8) [2023-02-19]. ISSN 1424-2818. doi:10.3390/d12080289. (原始内容存档于2022-12-15) (英语).
  3. Marqués, Silvia; Ramos, Juan L. . Molecular Microbiology. 1993, 9 (5): 923–9. PMID 7934920. doi:10.1111/j.1365-2958.1993.tb01222.x.
  4. Gomes, NC; Kosheleva, IA; Abraham, WR; Smalla, K. . FEMS microbiology ecology. 2005, 54 (1): 21–33. PMID 16329969. doi:10.1016/j.femsec.2005.02.005.
  5. . [2014-05-20]. (原始内容存档于2008-11-23).
  6. Ward, PG; Goff, M; Donner, M; Kaminsky, W; O'Connor, KE. . Environmental science & technology. 2006, 40 (7): 2433–7. PMID 16649270. doi:10.1021/es0517668.
  7. Amer, GA; Utkhede, RS. . Canadian journal of microbiology. 2000, 46 (9): 809–16. PMID 11006841. doi:10.1139/w00-063.
  8. Validov, S; Kamilova, F; Qi, S; Stephan, D; Wang, JJ; Makarova, N; Lugtenberg, B. . Journal of applied microbiology. 2007, 102 (2): 461–71. PMID 17241352. doi:10.1111/j.1365-2672.2006.03083.x.
  9. Cornelis P (editor). 1st. Caister Academic Press. 2008 [2014-05-20]. ISBN 1-904455-19-0. (原始内容存档于2016-09-12).
  10. . [2014-05-20]. (原始内容存档于2015-04-17).
  11. Summers, RM; Louie, TM; Yu, CL; Subramanian, M. . Microbiology (Reading, England). 2011, 157 (Pt 2): 583–92. PMID 20966097. doi:10.1099/mic.0.043612-0.

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.