完全性 (统计学)

统计学中, 完全性,又称统计量的一个性质。 从本质上讲,它确保不同的参数值对应的分布是不同的。一个具有完全性的统计量称为完全统计量

定义

考虑一个随机变量 ,其概率分布 为参数。称一个统计量 完全的,若对任意可测函数 [1]

如果对所有 都有 ,则 对所有 都成立。

若对上述函数 加上有界的条件,则称该统计量为有界完全的

例子

是来自参数为伯努利分布的独立随机样本,其中。统计量的完全统计量。注意到服从参数为二项分布。若有某个,使得都成立,则

,则多项式上恒为0。可知其每一项系数都为0,进而得到。由定义,的完全统计量。

完全性的重要性

巴苏定理

界完全性出现在巴苏定理中,[2] 它指出任何有界完全且充分的统计量与任何辅助统计量独立。

Bahadur定理

有界完全性也出现在Bahadur定理中。 定理指出,当至少存在一个最小充分统计量时,如果一个统计量是充分的并且有界完全的,则它是一个最小充分统计量。

注释

  1. Young, G. A. and Smith, R. L. (2005). Essentials of Statistical Inference. (p. 94). Cambridge University Press.
  2. Casella, G. and Berger, R. L. (2001). Statistical Inference. (pp. 287). Duxbury Press.

参考文献

  • Basu, D. J. K. Ghosh , 编. . Lecture Notes in Statistics 45. Springer. 1988. ISBN 0-387-96751-6. MR 0953081.
  • Bickel, Peter J.; Doksum, Kjell A. Second (updated printing 2007) of the Holden-Day 1976. Pearson Prentice–Hall. 2001. ISBN 0-13-850363-X. MR 0443141.
  • E. L., Lehmann; Romano, Joseph P. . Springer Texts in Statistics Third. New York: Springer. 2005: xiv+784 [2017-12-25]. ISBN 0-387-98864-5. MR 2135927. (原始内容存档于2013-02-02).
  • Lehmann, E.L.; Scheffé, H. . Sankhyā: the Indian Journal of Statistics. 1950, 10 (4): 305–340. JSTOR 25048038. MR 0039201.
  • Lehmann, E.L.; Scheffé, H. . Sankhyā: the Indian Journal of Statistics. 1955, 15 (3): 219–236. JSTOR 25048243. MR 0072410.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.