π轨域
结构
π轨域是一种由轨域并肩重叠后所形成的分子轨域,除了s轨域无法形成π轨域,之外,大部分的轨域都可以形成π轨域,较常是由两个pz轨域所形成,但实际上只要方向对了,无论是px或py都能形成π轨域。
π轨域可以有很多形状,但都不与核轴成旋转对称,其形状取决于他所形成的π键,例如:有共振时,π轨域就会变得较大较狭长,若是环状的共振,则其π轨域呈环形。其能容纳的电子数量也由其所形成的π键来决定,如乙烯内所形成的π轨域可容纳下2个电子,而苯的π轨域呈环状,可容下6个电子,这是因为共振使电子均匀分布而导致。
此外,在形成化学建的过程中,未混成的轨域有可能形成π轨域,如乙烯,碳上形成了sp2混成轨域,而未混成的p轨域则形成π轨域。
轨域能级

丁二烯中,不同能级的π轨域及其形状。
根据休克尔方法,可得出不同能量的π轨域,不同能级的π轨域形状不尽相同,电子会先从能量低的π轨域开始填入,例如丁二烯[1][2],其不同能级π轨域能量如下:
- π4: +7.71713 eV
- π3: +3.16186 eV (LUMO)
- π2: −8.66624 eV (HOMO)
- π1: −12.10962 eV
其电子会先从π1轨域开始填入,然后才填π2轨域,根原子轨域一样,一种形状只能填2个电子,且自旋互为相反数,因此整个π轨域,π3轨域和π4轨域两个能级是空的,但要注意:此处的能级(繁体:)并非是电子壳层的能阶(繁体:)。
π键
参考文献
- E. Hückel, Zeitschrift für Physik, 70, 204 (1931); 72, 310 (1931); 76, 628 (1932); 83, 632 (1933).
- Hückel Theory for Organic Chemists, C. A. Coulson, B. O'Leary and R. B. Mallion, Academic Press, 1978.
- Catherine E. Housecroft, Alan G, Sharpe, Inorganic Chemistry, Pearson Prentice Hall; 2nd Edition, 2005, p. 29-33.
- Peter Atkins; Julio De Paula. Atkins’ Physical Chemistry. Oxford University Press, 8th ed., 2006.
- Yves Jean; Francois Volatron. An Introduction to Molecular Orbitals. Oxford University Press, 1993.
- Michael Munowitz, Principles of Chemistry, Norton & Company, 2000, p. 229-233.
- 曾国辉《原子结构》建宏出版社 台北市 1999 ISBN 957-724-801-2
- 曾国辉《化学键》建宏出版社 台北市 1999 ISBN 957-724-802-0
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.