Penman Monteith公式

Penman–Monteith公式Penman公式推廣而來,是用於計算净蒸散量(Evapotranspiration,ET),需要的输入數據為每日平均温度、风速、相對濕度日射量

联合国粮食及农业组织(FAO)对蒸散量进行建模的标准方法使用Penman–Monteith公式[1][2][3]美国土木工程师学会的标准方法修改了Penman–Monteith公式,時間步階由每日改為以每小时。 SWAT模型是许多使用Penman-Monteith公式估算蒸散量GIS集總式水文模型[4]

蒸散贡献在流域的水平衡中非常重要,但通常不会在结果中强调,因为相对于更直接测量的现象(例如雨水和溪流),该分量的精度通常较弱。除天气不确定性外,Penman-Monteith方程还对特定于植被的参数(例如气孔阻力)敏感[5]

Monteith(1981)

Monteith在1981改善Penman公式為Penman Monteith公式為以下形式:[6]

(式1)

其中:

Rn為全天空日射量(MJ m-2 day-1)

G為地表熱通量(MJ m-2 day-1)

ρa為空氣密度

cp為空氣比熱

es 為飽和蒸汽壓,可由Goff-Gratch方程式計算

ea 為實測蒸氣壓,即為相對溼度乘上es

ra為空氣動力學阻力

rs為植披所造成的傳輸阻力

Δ為水蒸氣飽和曲線對溫度作圖之斜率( kPa/ °C),可用式2計算[7]

,溫度單位為°C(式2)

γ:乾溼度常數(psychrometric constant)可用式3計算[7]

,P為大氣壓力(kPa),為水氣化潛熱2.453 (MJ /kg)(式3)

FAO簡化形式

ra的計算較為繁複,需要風速、地表粗糙長度等資料;rs則受葉面積指數(LAI)、葉片形狀等因素影響,因此這兩個參數隨不同地表、不同作物而有差異,這使得Penman-Monteith方程式之泛用性受限。而後聯合國糧食及農業組織為推廣此公式適用於所有地區,故選定參考作物之實驗數據,並以以下假設簡化參數[8]

(1)  假設參考作物高度為0.12 (m),且其葉面反射率為0.23[9]

(2)      令空氣動力學阻力ra = 208/u2 s m-1

(3)      令植披所造成的傳輸阻力rs = 70 s m-1

故將Penman-Monteith方程式簡化如下:

(式4)

其中:

ETo reference evapotranspiration (mm day-1)

Rn 全天空日射量(MJ m-2 day-1)

G 地表熱通量(MJ m-2 day-1)

T 日平均氣溫(°C)

u2 離地表兩公尺之風速(m s-1)

es 飽和蒸汽壓(kPa),可由Goff-Gratch方程式計算

ea 實測蒸氣壓(kPa),即為相對溼度乘上es

es - ea 飽和蒸汽壓差 (kPa)

Δ 水蒸氣飽和曲線對溫度作圖之斜率 (kPa °C-1)

γ 乾溼度常數 (kPa °C-1)

式4為聯合國糧食及農業組織所開發之作物模擬軟體 AquaCrop[10]所採用。在 AquaCrop中,各种形式的作物系数(K c )解释了建模的特定植被与参考蒸散量(RET或ET 0 )标准之间的差异。应力系数(K s )解释了由于环境应力而导致的ET降低(例如,土壤饱和度降低了区O 2 ,低土壤湿度会引起枯萎,空气污染和盐分化)。

Priestley-Taylor形式

Priestley-Taylor公式是Penman-Monteith公式的另一簡化版本,其將空氣非飽和水蒸氣和對流項簡化為單個經驗常數α。 PT模型可以表示如下:

(式5)

其中:

ETpt:Priestley-Taylor蒸散量,單位為mm day-1

α :解釋蒸汽壓差和電阻值的經驗常數[-]

通常,開放水域的α為1.26,但取值範圍很廣,從小於1(潮濕條件)到幾乎2(乾旱條件)[11]

參考資料

  1. Richard G. Allen; Luis S. Pereira; Dirk Raes; Martin Smith. . FAO Irrigation and drainage paper 56. Rome, Italy: Food and Agriculture Organization of the United Nations. 1998 [2021-01-11]. ISBN 978-92-5-104219-9. (原始内容存档于2011-05-15).
  2. S. Irmak; T. A. Howell; R. G. Allen; J. O. Payero; D. L. Martin. . Transactions of the ASAE. 2005, 48 (3): 1063–1077. ISSN 2151-0059. doi:10.13031/2013.18517.
  3. . www.fao.org. [2021-01-13]. (原始内容存档于2020-11-11).
  4. . [2021-01-11]. (原始内容存档于2007-11-02).
  5. Keith Beven. . Journal of Hydrology. 1979, 44 (3–4): 169–190. Bibcode:1979JHyd...44..169B. doi:10.1016/0022-1694(79)90130-6.
  6. Monteith, J. L. (1981). Evaporation and surface temperature. Quarterly Journal of the Royal Meteorological Society, 107(451), 1-27.
  7. Ventura, F.; Spano, D.; Duce, P.; Snyder, R. L. . Irrigation Science. 1999-05-11, 18 (4): 163–170. ISSN 0342-7188. doi:10.1007/s002710050058.
  8. Allen, R. G.、Pereira, L. S.、Raes, D.、Smith, M. (1998)。 Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56。Fao, Rome, 300(9),頁 D05109。
  9. Smith, M.、Allen, R.、Pereira, L. (1998)。 Revised FAO methodology for crop-water requirements
  10. . www.fao.org. [2021-01-11]. (原始内容存档于2020-10-31).
  11. M. E. Jensen, R. D. Burman & R. G. Allen (编). . ASCE Manuals and Reports on Engineering Practices 70. New York, NY: American Society of Civil Engineers. 1990. ISBN 978-0-87262-763-5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.