误差传播
很多情况下,被测量Z 不能直接测得,而是由N 个其他量通过函数关系来确定,在统计学上,由于变量含有误差,而使由函数计算出的被测量Z 受其影响也含有误差,称之为误差传播。阐述这种关系的定律称为误差传播定律。
误差传播定律
设有一般函数(线性函数和非线性函数)
Z=
式中 为可直接观测的相互独立的未知量,z为不便于直接观测的未知量。已知 的標準差分别为 ,现在要求z的標準差 。已知函数z的中误差关系式为 =(其中为任意常数)。由数学分析可知,变量的误差与函数的误差之间的关系,可以近似的用函数的全微分来表达,为此对上式求全微分,并以真误差的符号“Δ”替代微分的符号“d”得
式中 (i=1,2,,…,n)是函数对各个变量变量所取得偏导数,对上式以標準差平方代替真误差,由函数z的中误差关系式可得
=
将上式取平方根可得误差传播定律的一般形式
=±
外部链接
- Uncertainties and Error Propagation, Appendix V from the Mechanics Lab Manual, Case Western Reserve University.
- Mathieu Rouaud, 2013: Probability, Statistics and Estimation(页面存档备份,存于) Propagation of Uncertainties in Experimental Measurement.
- A detailed discussion of measurements and the propagation of uncertainty(页面存档备份,存于) explaining the benefits of using error propagation formulas and monte carlo simulations instead of simple significance arithmetic.
- Uncertainties and Error Propagation, Vern Lindberg's Guide to Uncertainties and Error Propagation.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.