萊維過程
性质
独立增量
设Xt是一个连续时间上的随机过程。也就是说,对于任何固定的t ≥ 0,Xt是一个随机变量。过程的增量为差值Xs − Xt(任意的时间t < s)。 独立增量意味着对于任何时间s > t > u > v,Xs − Xt和Xu − Xv相独立。
可分性
莱维过程与无限可分分布有关:
- 增量的分布是无穷可分的。即对任意给定的n,Xt的分布可以表示为n个与Xt/n同分布的随机变量的和的分布。
- 反之,对于每个无穷可分的分布,可以构造出一个与之对应的Lévy过程。
矩
当莱维过程的n阶矩存在有限时, 它满足二项式等式:
例子
参考来源
翻译自英语、法语版维基词条。
Ken-iti Sato. Lévy Processes and Infinitely Divisible Distributions,Cambridge University Press, 1999
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.