矩阵范数
矩阵范数()亦译矩阵模是数学中矩阵论、线性代数、泛函分析等领域中常见的基本概念,是将一定的矩阵空间创建为赋范矢量空间时为矩阵装备的范数。应用中常将有限维赋范矢量空间之间的映射以矩阵的形式表现,这时映射空间上装备的范数也可以通过矩阵范数的形式表达。
定义
赋范矢量空间是拓扑矢量空间中的基本种类。通过赋予矢量空间(线性空间)以范数,创建拓扑结构。考虑系数域(可以是实数域或复数域等)上的所有矩阵所构成的矢量空间。这是一个有维的-矢量空间。可以如同对其他的有限维-矢量空间一样,为矩阵空间装备范数。这样的范数称为上的一个矩阵范数。
依照范数的定义,一个从映射到非负实数的函数满足以下的条件:
此外,某些定义在方块矩阵组成空间上的矩阵范数满足一个或多个以下与的条件:
一致性特性()也称为次可乘性()。某些书籍中,矩阵范数特指满足一致性条件的范数。
常见矩阵范数
满足以上设定的矩阵范数可以有多种。由于它们都是定义在这个有限维矢量空间上的范数,所以实质上是等价的。常见的矩阵范数通常是在矩阵的应用中自然定义或诱导的范数。
矢量范数诱导的矩阵范数
考虑从矢量空间映射到的所有线性映射的构成的空间:。设和中分别装备了两个矢量范数和,则可以定义上的算子范数:
- 。
而给定了基底后,每个从映射到的线性映射都可以用一个的矩阵来表示,所以同样地可以定义上的非负映射:
- 。
可以验证,满足矩阵范数的定义,因此是一个矩阵范数。这个矩阵范数被称为是由矢量空间范数诱导的矩阵范数,可以看作是算子范数在由有限维矢量空间之间线性映射组成的空间上的特例。如果,所对应的矩阵空间就是阶方块矩阵空间。这时可以验证,诱导范数满足一致性条件。
p-范数诱导的矩阵范数
当和中装备的矢量范数都是-范数的时候,诱导的矩阵范数也称为矩阵的诱导-范数。具体来说就是:
- 。
在和的情况下,其范数可以以下方式计算:
这些与矩阵的Schatten p-范数不同,也可以用。来表示。
当p = 2(欧几里德范数)时,诱导的矩阵范数就是谱范数。矩阵A的谱范数是A最大的奇异值或半正定矩阵A*A的最大特征值的平方根:
其中A*代表A的共轭转置。
任何诱导的矩阵范数都满足此不等式
其中ρ(A)是A的谱半径。事实上,可以证明ρ(A)是A的所有诱导范数的下界。
此外,我们有
- 。
矩阵元范数
这些矢量范数将矩阵视为矢量,并使用类似的矢量范数。
举例说明,使用矢量的p-范数,我们得到:
注:不要把矩阵元p-范数与诱导p-范数混淆。
弗罗贝尼乌斯范数
对p = 2,这称为弗罗贝尼乌斯范数(Frobenius norm)或希尔伯特-施密特范数(Hilbert–Schmidt norm),不过后面这个术语通常只用于希尔伯特空间。这个范数可用不同的方式定义:
这里A*表示A的共轭转置,σi是A的奇异值,并使用了迹函数。弗罗贝尼乌斯范数与Kn上欧几里得范数非常类似,来自所有矩阵的空间上一个内积。
弗罗贝尼乌斯范数是服从乘法的且在数值线性代数中非常有用。这个范数通常比诱导范数容易计算。
极大值范数
极大值范数是p=∞的元素范数,
- 。这个范数不服从次可乘性(sub-multiplicative property)。
一致范数
一个上矩阵范数称为与上矢量范数以及上矢量范数一致,如果
对所有。根据定义,所有诱导范数是一致范数。
范数的等价
对任何两个矢量范数||·||α and ||·||β,我们有
对某个正数r与s,中所有矩阵A成立。换句话说,它们是等价的范数;它们在上诱导了相同的拓扑。
此外,当,则对任何矢量范数 ||·||,存在惟一一个正数k使得k||A|| 是一个(服从乘法)矩阵范数。
一个矩阵范数||·||α称为“极小的”,如果不存在其它矩阵范数||·||β满足||·||β≤||·||α。
参考数据
- Golub, Gene; Van Loan, Charles F., 3rd, Baltimore: The Johns Hopkins University Press: 56–57, 1996, ISBN 0-8018-5413-X
- Horn, Roger; Johnson, Charles, , Cambridge University Press, 1985, ISBN 0-521-38632-2
- Douglas W. Harder, Matrix Norms and Condition Numbers
- James W. Demmel, Applied Numerical Linear Algebra, section 1.7, published by SIAM, 1997.
- Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, published by SIAM, 2000. (页面存档备份,存于)