热扩散率

传热分析中,热扩散率(符号:,但注意都很常用)是热导率容积热容之比。

其中:

  • 热导率单位:W/(m K))
  • 容积热容(单位:J/(m3K))
  • 密度(单位:kg/(m3))
  • 比热容(单位:J/(kg K))

热扩散率的单位是m2/s。

对于普通的岩石来说, ~ 10-6 m2/s。在300K,空气的热扩散率是0.000024 m2/s。

对于空气的热扩散率与绝对温度之间的关系,参见

部分材料與物質的熱擴散率

部分材料與物質的熱擴散率[1]
材質熱擴散率 (mm2/s)來源
Pyrolytic graphite, parallel to layers1220
碳/碳纖維 at 25 °C 216.5 [2]
氦氣 (300 K, 1 atm) 190 [3]
純銀 (99.9%)165.63
氫氣 (300 K, 1 atm) 160 [3]
127[4]
at 25 °C111[2]
97[4]
88 [4]
鋁-10矽-錳-鎂 (Silafont 36) at 20 °C74.2[5]
6061-T6 鋁合金64[4]
(99.95%) at 25 °C54.3[6]
鋁-5鎂-2矽-錳 (Magsimal-59) at 20 °C44.0[7]
40 [4]
水蒸氣 (1 atm, 400 K) 23.38
23[4]
氬氣 (300 K, 1 atm) 22 [3]
氮氣 (300 K, 1 atm) 22 [3]
空氣 (300 K) 19 [4]
, AISI 1010 (0.1% carbon)18.8[8]
氧化鋁 (polycrystalline) 12.0
, 1% carbon11.72
Si3N4 with CNTs 26 °C 9.142 [9]
Si3N4 without CNTs 26 °C 8.605 [9]
304不鏽鋼 at 27 °C4.2[4]
熱解石墨, normal to layers 3.6
310不鏽鋼 at 25 °C3.352[10]
Inconel 600 at 25 °C3.428[11]
石英1.4[4]
砂岩 1.15
冰 at 0 °C 1.02
二氧化矽 (polycrystalline)0.83[4]
磚塊, common 0.52
玻璃窗戶 0.34
磚塊, adobe 0.27
PC塑膠 (polycarbonate) at 25 °C0.144[12]
水 at 25 °C 0.143 [12]
PTFE塑膠 (Polytetrafluorethylene) at 25 °C 0.124 [13]
PP塑膠 (polypropylene) at 25 °C0.096[12]
尼龍 0.09
橡膠 0.089 - 0.13 [14]
木材 (黃松) 0.082
石蠟 at 25 °C0.081[12]
PVC塑膠 (polyvinyl chloride)0.08[4]
引擎用油 (saturated liquid, 100 °C)0.0738
酒精0.07[4]


参见

  1. Brown; Marco. 3rd. McGraw-Hill. 1958. and Eckert; Drake. . McGraw-Hill. 1959. ISBN 978-0-89116-553-8. cited in Holman, J.P. 9th. McGraw-Hill. 2002. ISBN 978-0-07-029639-8.
  2. V. Casalegno; P. Vavassori; M. Valle; M. Ferraris; M. Salvo; G. Pintsuk. . Journal of Nuclear Materials. 2010, 407 (2): 83. Bibcode:2010JNuM..407...83C. doi:10.1016/j.jnucmat.2010.09.032.
  3. Lide, David R. (编). 71st. Boston: Chemical Rubber Publishing Company. 1992. cited in Baierlein, Ralph. 需要免费注册. Cambridge, UK: Cambridge University Press. 1999: 372 [1 December 2011]. ISBN 978-0-521-59082-2.
  4. Jim Wilson. . August 2007 [2021-11-07]. (原始内容存档于2021-11-08).
  5. P. Hofer; E. Kaschnitz. . High Temperatures – High Pressures. 2011, 40 (3–4): 311 [2021-11-07]. (原始内容存档于2016-03-04).
  6. A. Lindemann; J. Blumm. . 17th Plansee Seminar 3. 2009.
  7. E. Kaschnitz; M. Küblböck. . High Temperatures – High Pressures. 2008, 37 (3): 221 [2021-11-07]. (原始内容存档于2016-03-04).
  8. Lienhard, John H. Lienhard, John H. 5th. Dover Pub. 2019: 715.
  9. O. Koszor; A. Lindemann; F. Davin; C. Balázsi. . Key Engineering Materials. 2009, 409: 354. S2CID 136957396. doi:10.4028/www.scientific.net/KEM.409.354.
  10. J. Blumm; A. Lindemann; B. Niedrig; R. Campbell. . International Journal of Thermophysics. 2007, 28 (2): 674. Bibcode:2007IJT....28..674B. S2CID 120628607. doi:10.1007/s10765-007-0177-z.
  11. J. Blumm; A. Lindemann; B. Niedrig. . High Temperatures – High Pressures. 2003–2007, 35/36 (6): 621 [2021-11-07]. doi:10.1068/htjr145. (原始内容存档于2015-09-24).
  12. J. Blumm; A. Lindemann. . High Temperatures – High Pressures. 2003–2007, 35/36 (6): 627. doi:10.1068/htjr144.
  13. J. Blumm; A. Lindemann; M. Meyer; C. Strasser. . International Journal of Thermophysics. 2011, 40 (3–4): 311. Bibcode:2010IJT....31.1919B. S2CID 122020437. doi:10.1007/s10765-008-0512-z.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.