抛物柱面函数
抛物柱面函数是满足下列微分方程的特殊函数:
在利用分离变数法处理在抛物柱面坐标在的拉普拉斯方程时,自然出现上列方程
通过解二次代数方程和变数代换可以将上列方程表示为两种标准形式:
- (A)
及
- (B)
如果
- 是一个解,则
- 也是解。
参考文献
- Rozov, N.Kh., , Hazewinkel, Michiel (编), , Springer, 2001, ISBN 978-1-55608-010-4
- Temme, N. M., , Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), , Cambridge University Press, 2010, ISBN 978-0521192255, MR2723248
- Weber, H.F. (1869) "Ueber die Integration der partiellen Differentialgleichung ". Math. Ann., 1, 1–36
- Whittaker, E.T. (1902) "On the functions associated with the parabolic cylinder in harmonic analysis" Proc. London Math. Soc.35, 417–427.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.