截角正二十四胞体
截角正二十四胞体由48个三维胞组成: 24个立方体, 和24个截角八面体。每个顶点周围环绕着三个截角八面体和一个立方体。[1]
截角正二十四胞体 | |
---|---|
類型 | 均匀多胞体 |
識別 | |
名稱 | 截角正二十四胞体 |
參考索引 | 2 3 4 |
數學表示法 | |
考克斯特符號 | |
施萊夫利符號 | t0,1{3,4,3} |
性質 | |
胞 | 10 24 (4.4.4) 24 (4.6.6) |
面 | 240 144 {4} 96 {6} |
邊 | 384 |
頂點 | 144 |
組成與佈局 | |
顶点图 | Irr. tetrahedron |
對稱性 | |
考克斯特群 | F4, [3,4,3], order 1152 |
特性 | |
convex, isogonal,环带多胞体 | |
结合
截角八面体的六边形面彼此结合在一起,而它们的正方形面则连接到立方体。
注释
- 截角正二十四胞体是截角八面体的四维类比。
参考文献
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 (页面存档备份,存于)
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 0-486-40919-8 p.88 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.)
- Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33-62, 1937.
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
- Olshevsky, George, Pentachoron at Glossary for Hyperspace.
- 1. Convex uniform polychora based on the pentachoron - Model 3, George Olshevsky.
- Klitzing, Richard. . bendwavy.org. x3x3o3o - tip, o3x3x3o - deca
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.