布谷鸟搜索算法

布谷鸟搜索(Cuckoo Search,縮寫 CS),也叫杜鹃搜索,是由剑桥大学杨新社(音譯自:Xin-She Yang)教授和S.戴布(S.Deb)于2009年提出的一种新兴启发算法[1]

CS算法是通过模拟某些种属布谷鸟的寄生育雏(Brood Parasitism) [2],来有效地求解最优化问题的算法[3]。同时,CS也采用相关的Levy飞行搜索机制。研究表明,布谷鸟搜索比其他群体优化算法更有效[4]

布谷鸟搜索

布谷鸟搜索(CS)使用蛋巢代表解。最简单情况是,每巢有一个蛋,布谷鸟的蛋代表了一种新的解。其目的是使用新的和潜在的更好的解,以取代不那么好的解。该算法基于三个理想化的规则:

  • 每个杜鹃下一个蛋,堆放在一个随机选择的巢中;
  • 最好的高品质蛋巢将转到下一代;
  • 巢的数量是固定的,布谷鸟的蛋被发现的概率为

实际应用

布谷鸟搜索到工程优化问题中的应用已经表现出其高优效率[5] 经过几年的发展,为了进一步提高算法的性能,CS算法的很多变体与改进逐步涌现。瓦爾頓(Walton)等提出了修正布谷鳥搜索(Modified Cuckoo Search,縮寫 MCS);伐立安(Valian)等提出了一种可变参数的改进CS算法,提高了收敛速度,并将改进算法应用于前馈神经网络训练中[6];馬里切爾凡姆(Marichelvam)将一种混合CS算法应用于流水车间调度问题求解中[7];錢德拉塞卡蘭(Chandrasekaran)等将集成了模糊系统的混合CS算法应用于机组组合问题[8]

楊(Yang)和戴布(Deb)提出多目标布谷鸟搜索(Multiobjective Cuckoo Search,縮寫 MOCS),应用到工程优化并取得很好的效果[9];詹(Zhan)等通过对种群分组,并根据搜索的不同阶段对搜索步长进行预先设置,提出了修正調適布谷鸟搜索(Modified Adaptive Cuckoo Search,縮寫 MACS),提高了CS的性能[10]

參考文獻

  1. X. S. Yang and S. Deb, Cuckoo search via Lévy flights, in: World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), IEEE Publications,pp. 210-214.
  2. R. B. Payne, M. D. Sorenson, and K. Klitz, The Cuckoos, Oxford University Press, (2005).
  3. X.S. Yang and S. Deb, Engineering optimisation by cuckoo search, Int. J. Mathematical Modelling and Numerical Optimisation, Vol. 1, No. 4, 330-343 (2010).
  4. Novel Cuckoo Search Beats Particle Swarm Optimization, http://www.scientificcomputing.com/news-DA-Novel-Cuckoo-Search-Algorithm-Beats-Particle-Swarm-Optimization-060110.aspx 页面存档备份,存于
  5. Gandomi A, Yang X, Alavi A. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[J]. Engineering with Computers, Vol. 29, 17-35 (2013).
  6. E. Valian, S. Mohanna and S. Tavakoli, Improved cuckoo search algorithm for feedforward neural network training, Int. J. Artificial Intelligence and Applications, Vol. 2, No. 3, 36-43(2011).
  7. M.K.Marichelvam, An improved hybrid Cuckoo Search (IHCS) metaheuristics algorithm for permutation flow shop scheduling problems, International Journal of Bio-Inspired Computation, Vol. 4, No. 4, 200-205 (2012).
  8. K. Chandrasekaran and S. P. Simon, Multi-objective scheduling problem: Hybrid approach using fuzzy assisted cuckoo search algorithm, Swarm and Evolutionary Computation, Vol. 5, 1-16 (2012).
  9. X. S. Yang and S. Deb, Multiobjective cuckoo search for design optimization, Computers and Operations Research, Vol. 40, No. 6, 1616-1624 (2013).
  10. Y. Zhang, L. Wang, Q. Wu, Modified Adaptive Cuckoo Search Algorithm and Formal Description for Global Optimization, International Journal of Computer Applications in Technology, Vol. 44, No. 2, 73-79 (2012).

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.