完全费米—狄拉克积分
完全费米—狄拉克积分,以恩里科·费米和保罗·狄拉克各取一字命名,已知指數j定义如下

Fermi-Dirac Integral animation

Fermi-Dirac Integral complex minus

Fermi-Dirac Integral complex
等於
此處為多重对数函数。
特徵值
對j = 0,函數的封閉形式存在:
當,與多重對數函數的值比較:
参考文献
Table of Integrals, Series, and Products, I.S. Gradshteyn, I.M. Ryzhik, 5th edition, p. 370, formula № 3.411.3.
外部链接
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.