增透膜
增透膜(英语:Anti-reflective coating,AR)是一种表面光学镀层,它通过减少光的反射以增加透过率。在复杂的光学系统中,它可以通过减少系统中的散射光来提高对比度,例如望远镜,这对天文学十分重要。其他方面,增透膜能减少暗处双筒望远镜的闪光。

很多涂层都包括了折射率不同的透明薄膜结构。薄膜的厚度决定其作用的反射光波长。当光线在增透膜上产生二次反射时,会和原反射光发生干涉,从而减弱反射光。而根据能量守恒,光的能量不变。因此当反射光减少时,透射光便增多。这就是增透膜的原理。一般,选择增透膜时需确定波长,如红外线,可见光以及紫外线。
应用
类型
折射率匹配
最简单的抗反射涂层形式是由瑞利男爵于 1886 年发现的。由于与环境发生化学反应,当时光学玻璃表面会随着时间而生成脏污 (页面存档备份,存于)。 Rayleigh 测试了一些旧的、稍微脏污的玻璃片,惊讶地发现它们比新的、干净的玻璃片穿透更多的光。取代了空气-玻璃界面,脏污层形成了空气-脏污层界面与脏污层-玻璃界面。由于脏污层的折射率介于玻璃和空气之间,因此这两个界面中的反射量每一个都比空气-玻璃界面更少。事实上,这两个反射的总和小于仅是由空气-玻璃组成的界面反射,这可以从菲涅耳方程计算出来。
一种方法是使用渐变折射率 (graded-index, GRIN) 抗反射涂层,即折射率几乎连续变化的涂层。有了这些,就可以在宽带谱和不同入射角范围内减少反射。
蛾眼
飞蛾的眼睛有一个异常的特性:它们的表面覆盖着一层天然纳米结构薄膜 (页面存档备份,存于),以消除反射。这使飞蛾不但能黑暗中能看得很清楚,并且也不会因为反射而暴露自己的位置给掠食者。该结构由六边形凸点图案组成,每个凸点约高 200 纳米,中心间隔为 300 纳米。这种抗反射涂层之所以有效,是因为凸点小于可见光波长,使得空气-眼睛组织介质对可见光而言具有连续的折射率梯度 (页面存档备份,存于),进而有效地去除了空气-透镜界面反射。人类利用了此效应制造抗反射膜;这是一种仿生学 (页面存档备份,存于)的应用。例如,佳能公司利用蛾眼技术在其次波长结构涂层中显著减少镜头光晕 (页面存档备份,存于)。
这种结构也用于光学组件,例如,由氧化钨和氧化铁组成的蛾眼结构可用作光电极,用于分解水以产生氢气。该结构由数百微米大小的氧化钨球体组成,上面镀着数纳米的氧化铁层。
理论
干扰层
可以认为使用中间层形成抗反射涂层类似于电信号的阻抗匹配技术。 (在光纤研究中使用了类似的方法,有时使用与折射率匹配的油来暂时消除全内反射,以便光可以耦合进或耦合出光纤。)理论上可以通过扩展来进一步减少反射该过程对几层材料,逐渐将每一层的折射率混合在空气的折射率和基材的折射率之间。
然而,实用的抗反射涂层依赖于中间层,不仅因为它直接降低反射系数,而且还利用了薄层的干扰效应。假设精确控制层的厚度,使其恰好是层中光波长的四分之一(λ/4 = λ0/(4n1),其中 λ0 是真空波长)。然后将该层称为四分之一波涂层。对于这种类型的涂层,当从第二个界面反射时,垂直入射光束 I 将比从第一个表面反射的光束传播其自身波长的一半,从而导致相消干涉。对于较厚的涂层(3λ/4、5λ/4 等)也是如此,但是在这种情况下,由于反射率对波长和入射角的依赖性更强,因此抗反射性能更差。
如果两个光束 R1 和 R2 的强度完全相等,它们将相消干涉并相互抵消,因为它们完全不同相。因此,没有来自表面的反射,并且光束的所有能量都必须在透射光线 T 中。在计算堆叠层的反射时,可以使用传递矩阵方法。
原理
许多涂层由透明的薄膜结构组成,具有交替的折射率不同的交替层。 选择层厚度以在从界面反射的光束中产生相消干涉(destructive interference),并在相应的透射光束中产生相长干涉(constructive interference)。
参考
- Understanding bottom antireflective coatings (页面存档备份,存于)
- Yet, Siew Ing. 5375. SPIE: 940–948. 2004 [2012-06-25]. doi:10.1117/12.535034. (原始内容存档于2017-06-02).