哈密顿向量场
在数学与物理中,哈密顿向量场是辛流形上一个向量场,定义在任何能量函数或哈密顿函数上。以物理学家和数学家威廉·卢云·哈密顿命名。哈密顿向量场是经典力学中的哈密顿方程的几何表现形式,哈密顿向量场的积分曲线表示哈密顿形式的运动方程的解。由哈密顿向量场生成的流是辛流形的微分同胚,在物理中称为典范变换,在数学中称为(哈密顿)辛同胚。
哈密顿向量场可以更一般地定义在任何泊松流形上。对应于流形上的函数 f 与 g 的两个哈密顿向量场的李括号也是一个哈密顿向量场,其哈密顿函数由 g 与 f 的泊松括号给出。
定义
假设 (M,ω) 是一个辛流形。因为辛形式 ω 非退化,诱导了切丛 与余切丛 的一个线性同构
以及逆
从而,流形 M 上的1-形式可以与向量场等价起来,故任何可微函数 确定了惟一的向量场 XH = Ω(dH),称为哈密顿函数 H 的哈密顿向量场。即对 M 上任何向量场 Y,等式
一定成立。
注:一些作者定义哈密顿向量场为相反的符号;需注意物理与数学著作的不同习惯。
例子
假设 M 是一个 2n 维辛流形。则由达布定理,我们在局部总可以取 M 的一个典范坐标 ,在这个坐标系下辛形式表示为
则关于哈密顿函数 H 的哈密顿向量场具有形式
这里 Ω 是一个 2n × 2n 矩阵
假设 M = R2n 是 2n 维具有(整体)典范坐标的辛向量空间。
- 如果 则
- 如果 则
- 如果 则
- 如果 则
泊松括号
哈密顿向量场的概念导致了辛流形 M 上的可微函数的一个斜对称双线性算子,这就是泊松括号,由如下公式定义
这里 表示沿着向量场 X 的李导数。此外,我们可以验证有恒等式:
这里右边表示哈密顿函数 g 与 g 对应的哈密顿向量场的李括号。事实上有:
作为一个推论,泊松括号满足雅可比恒等式。
这意味着 M 上可微函数组成的向量空间,赋予泊松括号,是 R 上的一个李代数,且映射 是一个李代数反同态,其核由局部常值函数组成(如果 M 连通则为常数)。
参考文献
- Abraham, Ralph; Marsden, Jerrold E. . London: Benjamin-Cummings. 1978. ISBN 978-0-821-84438-0. See section 3.2.
- Arnol'd, V.I. . Berlin etc: Springer. 1997. ISBN 0-387-96890-3.
- Frankel, Theodore. . Cambridge: Cambridge University Press. 1997. ISBN 0-521-38753-1.
- McDuff, Dusa; Salamon, D. . Oxford Mathematical Monographs. 1998. ISBN 0-19-850451-9.