周环

代数几何中,代数簇周环(得名于周炜良)是簇作为拓扑空间的上同调环的替代品:子簇(所谓代数圈)构成了它的元素,而其乘法结构来自子簇的相交。事实上,两环间有一自然映射,它保持了二者都有的几何概念(例如陈类、相交配对以及庞加莱对偶)。周环的优势在于其几何定义不需使用非代数概念。并且,使用了纯拓扑情况下不可用的代数工具后,某些两环都有的构造在周环中更简单。

有理等价

定义周环前,我们需先定义“有理等价”。如名字所暗示,它是一个等价关系。假定X是一代数簇,Y、Z是其子簇,若存在一包含于积族P1×X中,且以P1参数化的平坦族,使得Y和Z是它的两个纤维,我们就称Y和Z有理等价。用古典语言来说,我们想要一个积族的子簇,Y和Z是其两纤维,且其所有纤维有相同的希尔伯特多项式。若我们将P1当作一条线,则此概念就是配边的代数仿真。

周环的定义

有理等价的定义隐含了有理等价的两子簇维数相同。为了构造周环,我们将采用余维数(X本身与子簇的维数差),这样乘积才运行良好。对满足的整数k,我们定义群Ak(X)为余维数k的子簇的形式和,再模掉有理等价。 周环自身是它们的直和,即:

环的结构以簇的相交给出:如果两个等价类分别在Ak(X)和Al(X)中,我们定义它们的积为

此定义有一系列技术细节,我们将在下面讨论。可以肯定地说,在最好的情形(在有理等价下总成立),此交有余维数k + l,因而在Ak + l(X)中。这使得周环成为分次环。周环的元素常被称为“圈”

几何解释

周环的几何内涵混合了有理等价和相交积,这使得似乎形式的数字系数得以被解释为子簇的度。例如,射影空间Pn的周环是

是超平面(单个线性函数的零点轨迹)的有理等价类。更进一步,任何度为d而余维数为k的子簇都有理等价于。这意味着,如果有两个子簇有互补的维数(它们维数和为n)且度数分别为d、e,则它们的积就是

是单点的等价类。至少在YZ横截相交时(参见此处),这说明它们恰有de个交点。这实则是贝祖定理。类似于此的观察被极大地推广,产生了计数几何

函子性

圈的函子性,即定义在代数圈群Z*(X)层面上的平坦拉回和适当前推可扩展至周环,这给出群同态

事实上,给出在整个周环上的环同态(遵从相交积,至少在集合论层面上这是显然的),但不行(因为集合论层面上它就不行:我们并不总有)。但是我们有所谓“投影公式”:对X的子簇YX的子簇Y

上同调联系

周环非常像X上的整值上同调。事实上,有显然的映射

(以上记号代表在偶维数生成的上同调环)。它将每个有理等价类先送到由闭子簇Y决定的同调类,再送到它的庞加莱对偶(这解释了偶维数:复代数簇总有偶实维数,因此决定了偶维数的同调类)。可以证明,同一个有理等价类被送到同一个上同调类。更进一步,庞加莱对偶性的一部分说明同调类的相交积对应于上同调类的杯积,因此这映射是环同态。

有不少事实对周环和上同调环有完全相同的形式。例如推拉公式在同调和上同调中都成立。进一步,一基本结果声称,Pn的上同调环和以上给出的周环是一样的,乃至的解释都一样(这说明,对射影空间,实际上上一段定义的映射是同构)。但是对此结果,上同调证明技巧性颇高。相反,对周环我们给出一个相当简单的几何证明:

首先,设H为一超平面,从而同构于Pn 1。任何另外的超平面J有理等价与它,因为若它们分别由线性形式LM定义,我们可以把它们当成Pn中的点(通过其系数),由此可得它们间唯一的线。在线的点都是线性形式,从而定义了一族超平面,且由构造HJ皆在其中。H中的超平面,且由定义它的等价类为。这样我们便有一族超平面,其中每个都嵌在前一个中,依次同构与对应的射影空间且等价于的幂。

鉴于这些发现,我们考察任意余维数k度数d的子簇。如果k=0,那么Y必须等于Pn本身,因为射影空间不可约。如果k不是0,不妨假定H由令最后一个座标为0定义,且不在Y中。对每个P1中不是的点,定义映射

Y在这些映射下的像形成了一个在P1除去一点上的簇族。我们在 P1 × Pn中取闭包来得到Y的有理等价(这是一个等价关系得自一个非平凡但标准的事实:取闭包对应于取“平坦极限”)。如此,无穷远点处的纤维就是Y到超平面H上的投影,因此有与Y相同的度和维数。因为H本身就是射影空间,我们可重复此过程直到Y维数过大不能继续。由此可得Y有理等价与,而且我们已经找到了积结构。

一个类似的证明创建此定理的推广,在上同调中以勒雷-赫希定理闻名。它用对应纤维丛的陈类底空间的周环计算了射影空间丛的周环。上同调的证明则要用到谱串行

某些事实在周环中不成立,但在上同调环中成立。尤其是Künneth公式不成立,尽管勒雷-赫希定理对射影空间的积重建了它。进一步,尽管周环在簇上有逆变函子性,但在代数拓扑的意义下它构不成上同调理论,因为没有“相对周群”的概念。的确,在代数簇中,没有边界的概念,因此正面考虑替代品是无望的。

构造的细节

上面所给Ak(X)的构造需要一些关于“模掉有理等价”的说明。相关的技术细节是,就像在计算射影空间周环时一样,有时两个并非簇对应的圈有理等价,尽管有理等价似乎仅仅与集合结构有关。解法是由概形理论而来,即一个由理想定义的子簇可以被认为有重数d如果我们代理想。这样有理等价的古典陈述便不够了,且我们必须密切关注平坦族的细节。最后,等价类的形式和,例如aY + bZ,应该被认为是“有度的簇”aYbZ的不交并,一旦创建了这些约定,我们就可借有理等价为圈的自由阿贝尔群上的等价关系来得到周环。

相交积的定义有点更加复杂。主要问题是在相交中保持正确的维数。如果YZ是两个余维数为kl的子簇,它们的交并非总有余维数k+l。就如平凡的例子,两簇可能完全相同。为了克服此难处,我们可以证明“移动引理”。它断定在任何两个有理等价类中,我们总可以找到一般横截的两代表元,此时它们的交表现良好。子簇的横截性定义类似于流形的:先定义子簇的扎利斯基切空间,它们自然是X的切空间的子空间。如果这些子空间张成X的切空间,那么此交是横截的。如果横截性在它的一个稠密子集上成立,那么它是一般横截的。

某种意义上,对于可对上同调环证明的事实,声称周环可给出更简单的证明有些狡猾。特别是概形论的构造、平坦族和平坦极限,以及移动引理都解决了大量隐藏于周环下的技术困难。但是,这些技术细节大都是理论的基础,一旦它们被创建,几何上的优势就很明显了。

发展

周群被拓展至高端周群,这平行于从K0 (零阶代数K-理论)到高端代数K-理论的拓展。[1]

算术周群Q上代数簇的周群与记录阿基洛夫理论信息——即有关复流形结构的信息——部分的混合。[2]

历史

有理等价和环A*在20世纪初由意大利代数几何学派定义,且被Severi和他的学派使用(可参考Severi的论文[3][4],他本质上研究了代数曲面S的群A0(S);也可参阅芒福德论文开头的评论[5])。 Serge在他1930年的论文[6]中用了对奇异曲线的环A0更精细的研究来描述P2中代数曲面的支线。在1956年周炜良写了一篇重要的论文[7]后,环A*被称作周环。有些几何学家坚持是格罗滕迪克提出将此环命名为周环。

延伸阅读

[在维基数据]

维基文库中的相关文本:旧五代史·卷95》,出自薛居正旧五代史

参考文献

注释

  1. (Bloch 1986
  2. (H. Gillet & C. Soulé 1992
  3. F. Severi, "La base per le varieta algebriche di dim ensione qualunque contenute inunadata", Mem. della R. Accad. d'Italia, 5, (1934), p. 239
  4. F. Severi, "The series of sets of points on an algebraic surface", Proc. Imp. Acad. Volume 12, Supplement (1936), 1-7
  5. D.Mumford, "Rational equivalence of 0-cycles on surfaces", J. Math. Kyoto Univ. Volume 9, Number 2 (1969), 195-204
  6. B. Segre, "Sulla Caratterizzazione delle curve di diramazione", Mem. R. Acc. d'Italia, I 4 (1930)
  7. W.L. Chow, "On equivalence classes of cycles in an algebraic variety", Annals of Mathematics, 1956
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.