上地幔

上地幔(英语:Upper Mantle)是地球内部的一层厚的岩石层,分布于地壳底界(离地表约 35 公里,离海洋约 10 公里),到下地幔顶界( 670 公里(420 英里)。 其温度范围从大约 200 °C (392 °F) 到大约 900 °C (1,650 °F)。 出露到地表的地幔物质含 55% 的橄榄石、35% 的辉石和 5% 至 10% 的氧化钙和氧化铝矿物,如斜长石尖晶石石榴石上地幔的成分随深度而变化。

地球的密度是根据地震波速度来推定的。 因受到上载岩石重量的压缩,其密度随深度也增加。 成分变化时,也能导致密度发生突变[1]。 在上地幔中的内部运动是引起板块构造移动的主要原因。地壳和地幔的区分是根据成分不同,而岩石圈软流圈的区分则根据其机械性质[2]。安德里亚·莫霍罗维奇在 1909 年首先发现地震波达到地幔的顶界时,其速度会突然增加,后此界面就被称为莫氏不连续面Mohorovičić 不连续面或“Moho” [3]

莫氏不连续面也是地壳的底部界面,因为地壳厚度不同,此不连续面分布深度也不一样,由地球表面以下 10 公里(6.2 英里)到 70 公里(43 英里)不等。 大洋地壳比大陆地壳薄,通常不到 10 公里(6.2 英里)厚。 大陆地壳厚约 35 公里(22 英里),但青藏高原下的地壳根部厚约 70 公里(43 英里)[4].上地幔的厚度约为 640 公里(400 英里)。 整个地幔的厚度约为 2,900 公里(1,800 英里),上地幔仅占地幔总厚度的 20% 左右[4]

上地幔和下地幔之间的边界是一个 670 公里(420 英里)的不连续面[2]。地震在浅层是走滑断层造成的; 但是在大约 50 公里(31 英里)以下,由于高温高压,地幔是黏性的,不能产生断层,因此无地震活动 ,但在在俯冲带中是例外,地震活动延申到 670 公里(420 英里)深[1]

莱曼不连续面

莱曼不连续面位于 220 公里(140 英里)深,由于在此深度 P 波和 S 波的速度突然增加而被认出此不连续面[5].

过渡区

上地幔和下地幔之间属过渡带,深度介于 410 公里(250 英里)和 670 公里(420 英里)之间。 由于地层压力增加,橄榄石在此深度,它的晶粒会重新排列,能形成更致密的晶体结构[6]。 例如尖晶橄榄石 变为布里奇曼石bridgmanite 和方镁石。地震的体波也会在此界面形成转换波、反射或折射。从矿物物理学也能预测到此界面,因为相变随温度和密度而变,因此亦随深度而变[6]

410公里不连续面

地震数据中在 410 公里(250 英里)深,都显示一个单一的主峰,它代表从 α- 到 β- Mg2SiO4(橄榄石到瓦士利石)的矿物相变。根据克劳修斯-克拉佩龙方程,这不连续面在寒冷地区较深,如俯冲板片,而在较暖地区,如地幔柱这不连续面较浅[6]

670公里不连续面

这不连续面比较复杂,是上地幔和下地幔之间的界面。PP (入射波及反射波皆为纵波)波仅在某些区域, 显示此界面,但 SS (入射波及反射波皆为横波)显示区域很广泛[6]。P到S的转换波可在此界面上反射一次或双次。此界面深度分布很宽(640-720 公里,或 397-447 英里)。根据克劳修斯-克拉佩龙方程的预测,在较冷地区此界面较深,而在较热地区此界面较浅[6]。通常尖晶橄榄石 ringwoodite在此界面相变到布里奇曼石和方镁石 periclase[7]。这种相变在热力学上是一种吸热反应,而且粘度会跳跃增加。这两个特征是建造地球动力学模型中的主要因素[8]

其他不连续面

另一个主要的相变在地幔 520 公里(320 英里)深,这是橄榄石(β 到 γ)和石榴石的转变[9] 。 这相变只是偶尔在地震数据中可观察到[10]。 其他非全球性的相变,在各种深度都有被发现[6][11].

温度和压力

地幔的温度范围从上边界的200 °C 到核幔边界的4,000 °C [12]。 上地幔的最高温度为 900 °C (1,650 °F)[13]。此高温范围,若在地表,地幔岩已被熔化。但地幔几乎完全是固体[14]。 这是因为固体开始熔化的温度,随压力而增加。在地幔上所承受的巨大岩石静压,阻止了地幔在深处的熔化。在长时间内。整个地幔能像流体一样变形,具有永久的塑性变形。上地幔的最高压力为 24.0 GPa(237,000 atm)ref name=”What”/>,而地幔底部为 136 GPa(1,340,000 atm)[12][15]。 根据深度[16],温度、成分、应力状态和许多其他因素,估计上地幔的粘度范围在 1019 和 1024 Pa•s 之间。上地幔的流动非常缓慢。当对最上地幔施加较大的压力时,它会变得更弱,这种效应被认为是形成构造板块边界的重要因素。 虽然粘度随深度而增加,但这种关系远非线性,并且有粘度显著降低的层次,特别是在上地幔和与地核的边界处[16]

运动

地幔中的对流物质循环运动,是起由于地球表面和外核之间的温差,以及在高压和高温下,结晶能够在数百万年内经历缓慢、蠕变、粘性状的变形[3]。 热的物质上升,而较冷(和较重)的物质向下沉。在俯冲带的会聚板块边界处,物质是向下运动的。位于地幔柱之上的地表海拔较高(因为地幔柱较热、密度较低并具有浮力),并有热点火山活动。

矿物成分

地震数据不能判断地幔的成分。但其成分可由岩石露头和其他证据分析而得,上地幔主要为镁铁质矿物的橄榄石和辉石,密度约为 3.33 g/cm3(0.120 lb/cu in) [1]。出露到地表的上地幔物质包括约 55% 的橄榄石和 35% 的辉石,以及 5% 至 10% 的氧化钙和氧化铝[1]。上地幔主要由不同比例的橄榄石、单斜辉石、斜方辉石和铝相组成[1]。含铝矿物在最上层地幔中是斜长石,然后是尖晶石,大约 100 公里(62 英里)以下为石榴石[1]。 在上地幔深处,辉石变得不稳定并多数转变为石榴石。

在加压实验中,橄榄石和辉石的矿物结构会发生变化。当转变为更致密的矿物结构时,密度曲线及地震速度会产生不连续面[1]。在过渡带的顶部,橄榄石会进行等化学相,转变为瓦士利石(wadsleyite)和尖晶橄榄石(ringwoodite)。这些高压橄榄石的多晶型矿物,在其晶体结构中具有很大的储水能力。这和无水橄榄石不同,这引起在过渡带可能拥有大量水的假设[17]

在地球内部,橄榄石的稳定深度在 410 公里(250 英里)以上。而尖晶橄榄石的稳定深度被推断在深度约 520 至 670 公里的过渡带内。在410 公里、520 公里和 670 公里深度的地震波的不连续性,均归因于橄榄石的多晶型物的相变。 在过渡带的底部,尖晶橄榄石分解成布里奇曼石(Bridgmanite)(以前称为硅酸镁钙钛矿)和铁方镁石。石榴石在过渡区底部或略低于过渡区底部也不稳定。 金伯利岩从地球内部溢出时,有时会携带岩石碎片。一些捕虏岩碎片含钻石,钻石是在地壳下方的高压区产生的。伴随钻石而来的岩石通常是超镁铁质结核和橄榄岩[1]

化学成分

地幔成分与地壳非常相似。但地幔的岩石和矿物往往比地壳含有更多的镁,而硅和铝则更少。上地幔中最丰富的前四种元素是氧、镁、硅和铁[18][19].

探勘

大洋地壳比大陆地壳相对较薄,因此地幔的勘探通常在海床而不是在陆地上进行。 第一次地幔勘探计划,Mohole,经过多次失败和成本超支后,于 1966 年被放弃。最深的钻深约为 180 m (590 ft)。 2005 年,海洋钻探船 JOIDES Resolution 钻探深度达到了海底以下 1,416 米。2007 年 3 月 5 日,RRS 詹姆斯库克号,在位于佛得角群岛和加勒比海之间的大西洋海底钻探,那里地幔暴露在于海面以下约 3 公里(1.9 英里)处,没有任何地壳覆盖。地幔覆盖数千平方公里[20][21][22].

Chikyu Hakken 用日本船只 Chikyū ,于2012 年 4 月 27 日,钻探到海平面以下 7,740 米的深度,创造了深海钻探的新世界纪录。此后,该记录被命运多舛的Deepwater Horizon移动海上钻井船超越,该钻井船在美国墨西哥湾密西西比峡谷油田的台伯矿区作业,创造了垂直钻柱总长度10,062 米的世界纪录[23]。之前美国船只 Glomar Challenger ,曾于 1978 年在马里亚纳海沟的海平面以下 7,049.5 米处钻探[24]。2012 年 9 月 6 日,科学深海钻探船 Chikyū 在太平洋西北部,日本下北半岛的海床以下 2,111 米深处,采集到岩石样本,创造了新的世界纪录。

2005 年探索地球最上层几百公里的一种新方法被提出,该方法由一个小型、致密、发热的探测器组成,该探测器能通过融化而钻穿地壳和地幔,同时能利用声学信号跟踪,钻头在岩石中位置和进展[25]。钻头由直径约 1 米(3 英尺 3 英寸)的钨质外球组成,内部有钴 60 作为放射性热源。要钻半年才能钻到洋壳下的莫霍面[26]。 利用计算机仿真也可以探索地幔的演化。 2009 年,一个超级计算机应用进程,创建了对45 亿年前地幔发育时矿床分布,尤其是对铁同位素的分布有创新见解[27]

参考文献

  1. Langmuir, Charles H.; Broecker, Wally (2012-07-22). How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind. pp. 179–183. ISBN 9780691140063
  2. Rothery, David A.; Gilmour, Iain; Sephton, Mark A. (March 2018). An Introduction to Astrobiology. p. 56. ISBN 9781108430838
  3. Alden, Andrew (2007). "Today's Mantle: a guided tour". About.com. Retrieved 2007-12-25.
  4. "Istria on the Internet – Prominent Istrians – Andrija Mohorovicic". 2007. Retrieved 2007-12-25.
  5. William Lowrie (1997). Fundamentals of geophysics. Cambridge University Press. p. 158. ISBN 0-521-46728-4
  6. Fowler, C. M. R.; Fowler, Connie May (2005). The Solid Earth: An Introduction to Global Geophysics. ISBN 978-0521893077
  7. Ito, E; Takahashi, E (1989). "Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications". Journal of Geophysical Research: Solid Earth. 94 (B8): 10637–10646.
  8. Fukao, Y.; Obayashi, M. (2013). "Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity". Journal of Geophysical Research: Solid Earth. 118 (11): 5920–5938. Bibcode:2013JGRB..118.5920F. doi:10.1002/2013jb010466.
  9. Deuss, Arwen; Woodhouse, John (2001-10-12). "Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle". Science. 294 (5541): 354–357. Bibcode2001Sci...294..354D.doi:10.1126/science.1063524.ISSN 0036-8075PMID 11598296S2CID 28563140
  10. Egorkin, A. V. (1997-01-01). "Evidence for 520-Km Discontinuity". In Fuchs, Karl (ed.). Upper Mantle Heterogeneities from Active and Passive Seismology. NATO ASI Series. Springer Netherlands. pp. 51–61. doi:10.1007/978-94-015-8979-6_4. ISBN 9789048149667
  11. Khan, Amir; Deschamps, Frédéric (2015-04-28). The Earth's Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective. Springer. ISBN 9783319156279
  12. Katharina., Lodders (1998). The planetary scientist's companion. Fegley, Bruce. New York: Oxford University Press. ISBN 978-1423759836OCLC 65171709
  13. "What Are Three Differences Between the Upper & Lower Mantle?". Sciencing. Retrieved 14 June 2019.
  14. Louie, J. (1996). "Earth's Interior". University of Nevada, Reno. Archived from the original on 2011-07-20. Retrieved 2007-12-24.
  15. Burns, Roger George (1993). Mineralogical Applications of Crystal Field Theory. Cambridge University Press. p. 354. ISBN 978-0-521-43077-7 Retrieved 2007-12-26.
  16. Walzer, Uwe. "Mantle Viscosity and the Thickness of the Convective Downwellings". Archived from the original on 2007-06-11.
  17. Bercovici, David; Karato, Shun-ichiro (September 2003). "Whole-mantle convection and the transition-zone water filter". Nature. 425 (6953): 39–44. Bibcode2003Natur.425...39Bdoi:10.1038/nature01918ISSN 0028-0836PMID 12955133S2CID 4428456
  18. Workman, Rhea K.; Hart, Stanley R. (February 2005). "Major and trace element composition of the depleted MORB mantle (DMM)". Earth and Planetary Science Letters. 231 (1–2): 53–72. Bibcode:2005E&PSL.231...53W. doi:10.1016/j.epsl.2004.12.005. ISSN 0012-821X.
  19. Anderson, D.L. (2007). New Theory of the Earth. Cambridge University Press. p. 301. ISBN 9780521849593
  20. Than, Ker (2007-03-01). "Scientists to study gash on Atlantic seafloor". NBC News. Retrieved 2008-03-16. A team of scientists will embark on a voyage next week to study an “open wound” on the Atlantic seafloor where the Earth’s deep interior lies exposed without any crust covering
  21. "Earth's Crust Missing In Mid-Atlantic". Science Daily. 2007-03-02. Retrieved 2008-03-16. Cardiff University scientists will shortly set sail (March 5) to investigate a startling discovery in the depths of the Atlantic
  22. "Japan hopes to predict 'Big One' with journey to center of Earth". PhysOrg.com. 2005-12-15. Archived from the original on 2005-12-19. Retrieved 2008-03-16. An ambitious Japanese-led project to dig deeper into the Earth's surface than ever before will be a breakthrough in detecting earthquakes including Tokyo's dreaded "Big One," officials said Thursday
  23. "- - Explore Records - Guinness World Records". Archived from the original on 2011-10-17.
  24. Japan deep-sea drilling probe sets world record". The Kansas City Star. Associated Press. 28 April 2012. Archived from the original on 28 April 2012. Retrieved 28 April 2012.
  25. Ojovan M.I., Gibb F.G.F., Poluektov P.P., Emets E.P. 2005. Probing of the interior layers of the Earth with self-sinking capsules. Atomic Energy, 99, 556–562
  26. Ojovan M.I., Gibb F.G.F. "Exploring the Earth’s Crust and Mantle Using Self-Descending, Radiation-Heated, Probes and Acoustic Emission Monitoring". Chapter 7. In: Nuclear Waste Research: Siting, Technology and Treatment, ISBN 978-1-60456-184-5 Editor: Arnold P. Lattefer, Nova Science Publishers, Inc. 2008
  27. University of California – Davis (2009-06-15). Super-computer Provides First Glimpse Of Earth's Early Magma Interior. ScienceDaily. Retrieved on 2009-06-16.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.